Efficient kNN Classification With Different Numbers of Nearest Neighbors | |
Zhang, Shichao1; Li, Xuelong2; Zong, Ming1; Zhu, Xiaofeng1; Wang, Ruili3; Zhu, XF (reprint author), Guangxi Normal Univ, Coll Comp Sci & Informat Technol, Guangxi Key Lab MIMS, Guilin 541004, Peoples R China. | |
作者部门 | 光学影像学习与分析中心 |
2018-05-01 | |
发表期刊 | IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
![]() |
ISSN | 2162-237X |
卷号 | 29期号:5页码:1774-1785 |
产权排序 | 2 |
摘要 | k nearest neighbor (kNN) method is a popular classification method in data mining and statistics because of its simple implementation and significant classification performance. However, it is impractical for traditional kNN methods to assign a fixed k value (even though set by experts) to all test samples. Previous solutions assign different k values to different test samples by the cross validation method but are usually time-consuming. This paper proposes a kTree method to learn different optimal k values for different test/new samples, by involving a training stage in the kNN classification. Specifically, in the training stage, kTree method first learns optimal k values for all training samples by a new sparse reconstruction model, and then constructs a decision tree (namely, kTree) using training samples and the learned optimal k values. In the test stage, the kTree fast outputs the optimal k value for each test sample, and then, the kNN classification can be conducted using the learned optimal k value and all training samples. As a result, the proposed kTree method has a similar running cost but higher classification accuracy, compared with traditional kNN methods, which assign a fixed k value to all test samples. Moreover, the proposed kTree method needs less running cost but achieves similar classification accuracy, compared with the newly kNN methods, which assign different k values to different test samples. This paper further proposes an improvement version of kTree method (namely, k*Tree method) to speed its test stage by extra storing the information of the training samples in the leaf nodes of kTree, such as the training samples located in the leaf nodes, their kNNs, and the nearest neighbor of these kNNs. We call the resulting decision tree as k*Tree, which enables to conduct kNN classification using a subset of the training samples in the leaf nodes rather than all training samples used in the newly kNN methods. This actually reduces running cost of test stage. Finally, the experimental results on 20 real data sets showed that our proposed methods (i.e., kTree and k*Tree) are much more efficient than the compared methods in terms of classification tasks. |
文章类型 | Article |
关键词 | Decision Tree k Nearest Neighbor (Knn) Classification Sparse Coding |
学科领域 | Computer Science, Artificial Intelligence |
WOS标题词 | Science & Technology ; Technology |
DOI | 10.1109/TNNLS.2017.2673241 |
收录类别 | SCI ; EI |
关键词[WOS] | Ad Diagnosis ; Image ; Selection ; Extraction ; Imputation ; Regression ; Algorithm |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
项目资助者 | China |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000430729100030 |
EI入藏号 | 20171703591830 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/30078 |
专题 | 光谱成像技术研究室 |
通讯作者 | Zhu, XF (reprint author), Guangxi Normal Univ, Coll Comp Sci & Informat Technol, Guangxi Key Lab MIMS, Guilin 541004, Peoples R China. |
作者单位 | 1.Guangxi Normal Univ, Coll Comp Sci & Informat Technol, Guangxi Key Lab MIMS, Guilin 541004, Peoples R China 2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr OPT IMagery Anal & Learning, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China 3.Massey Univ, Inst Nat & Math Sci, Auckland 4442, New Zealand |
推荐引用方式 GB/T 7714 | Zhang, Shichao,Li, Xuelong,Zong, Ming,et al. Efficient kNN Classification With Different Numbers of Nearest Neighbors[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2018,29(5):1774-1785. |
APA | Zhang, Shichao,Li, Xuelong,Zong, Ming,Zhu, Xiaofeng,Wang, Ruili,&Zhu, XF .(2018).Efficient kNN Classification With Different Numbers of Nearest Neighbors.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,29(5),1774-1785. |
MLA | Zhang, Shichao,et al."Efficient kNN Classification With Different Numbers of Nearest Neighbors".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 29.5(2018):1774-1785. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Efficient kNN Classi(2775KB) | 期刊论文 | 作者接受稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论