OPT OpenIR  > 光谱成像技术研究室
SCE: A Manifold Regularized Set-Covering Method for Data Partitioning
Li, Xuelong1; Lu, Quanmao1,2; Dong, Yongsheng1,3; Tao, Dacheng4,5; Dong, YS (reprint author), Chinese Acad Sci, Xian Inst Opt & Precis Mech, OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China.
作者部门光学影像学习与分析中心
2018-05-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
卷号29期号:5页码:1760-1773
产权排序1
摘要

Cluster analysis plays a very important role in data analysis. In these years, cluster ensemble, as a cluster analysis tool, has drawn much attention for its robustness, stability, and accuracy. Many efforts have been done to combine different initial clustering results into a single clustering solution with better performance. However, they neglect the structure information of the raw data in performing the cluster ensemble. In this paper, we propose a Structural Cluster Ensemble (SCE) algorithm for data partitioning formulated as a set-covering problem. In particular, we construct a Laplacian regularized objective function to capture the structure information among clusters. Moreover, considering the importance of the discriminative information underlying in the initial clustering results, we add a discriminative constraint into our proposed objective function. Finally, we verify the performance of the SCE algorithm on both synthetic and real data sets. The experimental results show the effectiveness of our proposed method SCE algorithm.

文章类型Article
关键词Cluster Ensemble Discriminative Constraint Manifold Structure Set Covering
学科领域Computer Science, Artificial Intelligence
WOS标题词Science & Technology ; Technology
DOI10.1109/TNNLS.2017.2682179
收录类别SCI ; EI
关键词[WOS]CLUSTERING ENSEMBLES ; MINIMUM SUM ; EVIDENCE ACCUMULATION ; ALGORITHM ; SEARCH ; FRAMEWORK ; SUBSPACE
语种英语
WOS研究方向Computer Science ; Engineering
项目资助者National Natural Science Foundation of China(U1604153 ; International Science and Technology Cooperation Project of Henan Province(162102410021) ; State Key Laboratory of Virtual Reality Technology and Systems(BUAA-VR-16KF-04) ; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province(GD201605) ; Australian Research Council(FT-130101457 ; 61125106) ; DP-140102164 ; LP-150100671)
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000430729100029
EI入藏号20171503555286
引用统计
被引频次:15[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/30077
专题光谱成像技术研究室
通讯作者Dong, YS (reprint author), Chinese Acad Sci, Xian Inst Opt & Precis Mech, OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China.
作者单位1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Henan Univ Sci & Technol, Sch Informat Engn, Luoyang 471023, Peoples R China
4.Univ Sydney, UBTech Sydney Artificial Intelligence Inst, Darlington, NSW 2008, Australia
5.Univ Sydney, Sch Informat Technol Fac Engn & Informat Technol, Darlington, NSW 2008, Australia
推荐引用方式
GB/T 7714
Li, Xuelong,Lu, Quanmao,Dong, Yongsheng,et al. SCE: A Manifold Regularized Set-Covering Method for Data Partitioning[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2018,29(5):1760-1773.
APA Li, Xuelong,Lu, Quanmao,Dong, Yongsheng,Tao, Dacheng,&Dong, YS .(2018).SCE: A Manifold Regularized Set-Covering Method for Data Partitioning.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,29(5),1760-1773.
MLA Li, Xuelong,et al."SCE: A Manifold Regularized Set-Covering Method for Data Partitioning".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 29.5(2018):1760-1773.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
SCE A Manifold Regul(3328KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Xuelong]的文章
[Lu, Quanmao]的文章
[Dong, Yongsheng]的文章
百度学术
百度学术中相似的文章
[Li, Xuelong]的文章
[Lu, Quanmao]的文章
[Dong, Yongsheng]的文章
必应学术
必应学术中相似的文章
[Li, Xuelong]的文章
[Lu, Quanmao]的文章
[Dong, Yongsheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。