SCE: A Manifold Regularized Set-Covering Method for Data Partitioning | |
Li, Xuelong1![]() ![]() ![]() | |
作者部门 | 光学影像学习与分析中心 |
2018-05-01 | |
发表期刊 | IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
![]() |
ISSN | 2162-237X |
卷号 | 29期号:5页码:1760-1773 |
产权排序 | 1 |
摘要 | Cluster analysis plays a very important role in data analysis. In these years, cluster ensemble, as a cluster analysis tool, has drawn much attention for its robustness, stability, and accuracy. Many efforts have been done to combine different initial clustering results into a single clustering solution with better performance. However, they neglect the structure information of the raw data in performing the cluster ensemble. In this paper, we propose a Structural Cluster Ensemble (SCE) algorithm for data partitioning formulated as a set-covering problem. In particular, we construct a Laplacian regularized objective function to capture the structure information among clusters. Moreover, considering the importance of the discriminative information underlying in the initial clustering results, we add a discriminative constraint into our proposed objective function. Finally, we verify the performance of the SCE algorithm on both synthetic and real data sets. The experimental results show the effectiveness of our proposed method SCE algorithm. |
文章类型 | Article |
关键词 | Cluster Ensemble Discriminative Constraint Manifold Structure Set Covering |
学科领域 | Computer Science, Artificial Intelligence |
WOS标题词 | Science & Technology ; Technology |
DOI | 10.1109/TNNLS.2017.2682179 |
收录类别 | SCI ; EI |
关键词[WOS] | CLUSTERING ENSEMBLES ; MINIMUM SUM ; EVIDENCE ACCUMULATION ; ALGORITHM ; SEARCH ; FRAMEWORK ; SUBSPACE |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
项目资助者 | National Natural Science Foundation of China(U1604153 ; International Science and Technology Cooperation Project of Henan Province(162102410021) ; State Key Laboratory of Virtual Reality Technology and Systems(BUAA-VR-16KF-04) ; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province(GD201605) ; Australian Research Council(FT-130101457 ; 61125106) ; DP-140102164 ; LP-150100671) |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000430729100029 |
EI入藏号 | 20171503555286 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/30077 |
专题 | 光谱成像技术研究室 |
通讯作者 | Dong, YS (reprint author), Chinese Acad Sci, Xian Inst Opt & Precis Mech, OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China. |
作者单位 | 1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Henan Univ Sci & Technol, Sch Informat Engn, Luoyang 471023, Peoples R China 4.Univ Sydney, UBTech Sydney Artificial Intelligence Inst, Darlington, NSW 2008, Australia 5.Univ Sydney, Sch Informat Technol Fac Engn & Informat Technol, Darlington, NSW 2008, Australia |
推荐引用方式 GB/T 7714 | Li, Xuelong,Lu, Quanmao,Dong, Yongsheng,et al. SCE: A Manifold Regularized Set-Covering Method for Data Partitioning[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2018,29(5):1760-1773. |
APA | Li, Xuelong,Lu, Quanmao,Dong, Yongsheng,Tao, Dacheng,&Dong, YS .(2018).SCE: A Manifold Regularized Set-Covering Method for Data Partitioning.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,29(5),1760-1773. |
MLA | Li, Xuelong,et al."SCE: A Manifold Regularized Set-Covering Method for Data Partitioning".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 29.5(2018):1760-1773. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
SCE A Manifold Regul(3328KB) | 期刊论文 | 作者接受稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论