A sparse dictionary learning method for hyperspectral anomaly detection with capped norm | |
Ma, Dandan1; Yuan, Yuan1; Wang, Qi2; Wang, Qi (author:crabwq@nwpu.edu.cn) | |
2017-12-01 | |
会议名称 | 37th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2017 |
会议录名称 | 2017 IEEE International Geoscience and Remote Sensing Symposium: International Cooperation for Global Awareness, IGARSS 2017 - Proceedings |
卷号 | 2017-July |
页码 | 648-651 |
会议日期 | 2017-07-23 |
会议地点 | Fort Worth, TX, United states |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
产权排序 | 1 |
摘要 | Hyperspectral anomaly detection is playing an important role in remote sensing field. Most conventional detectors based on the Reed-Xiaoli (RX) method assume the background signature obeys a Gaussian distribution. However, it is definitely hard to be satisfied in practice. Moreover, background statistics is susceptible to contamination of anomalies in the processing windows, which may lead to many false alarms and sensitiveness to the size of windows. To solve these problems, a novel sparse dictionary learning hyperspectral anomaly detection method with capped norm constraint is proposed. Contributions are claimed in threefold: 1) requiring no assumptions on the background distribution makes the method more adaptive to different scenes; 2) benefiting from the capped norm our method has a stronger distinctiveness to anomalies; and 3) it also has better adaptability to detect different sizes of anomalies without using the sliding dual window. The extensive experimental results demonstrate the desirable performance of our method. © 2017 IEEE. |
作者部门 | 光学影像学习与分析中心 |
DOI | 10.1109/IGARSS.2017.8127037 |
收录类别 | EI ; ISTP |
ISBN号 | 9781509049516 |
语种 | 英语 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/29944 |
专题 | 光谱成像技术研究室 |
通讯作者 | Wang, Qi (author:crabwq@nwpu.edu.cn) |
作者单位 | 1.Xi'An Institute of Optics and Precision Mechanics of CAS, China 2.School of Computer Science, Center for OPTical IMagery Analysis and Learning, Northwestern Polytechnical University, China |
推荐引用方式 GB/T 7714 | Ma, Dandan,Yuan, Yuan,Wang, Qi,et al. A sparse dictionary learning method for hyperspectral anomaly detection with capped norm[C]:Institute of Electrical and Electronics Engineers Inc.,2017:648-651. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
A sparse dictionary (340KB) | 会议论文 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论