Deep temporal architecture for audiovisual speech recognition | |
Tian, Chunlin1,2![]() ![]() ![]() | |
2017 | |
会议名称 | 2nd Chinese Conference on Computer Vision, CCCV 2017 |
会议录名称 | Computer Vision - 2nd CCF Chinese Conference, CCCV 2017, Proceedings |
卷号 | 771 |
页码 | 650-661 |
会议日期 | 2017-10-11 |
会议地点 | Tianjin, China |
出版者 | Springer Verlag |
产权排序 | 1 |
摘要 | The Audiovisual Speech Recognition (AVSR) is one of the applications of multimodal machine learning related to speech recognition, lipreading systems and video classification. In recent and related work, increasing efforts are made in Deep Neural Network (DNN) for AVSR, moreover some DNN models including Multimodal Deep Autoencoder, Multimodal Deep Belief Network and Multimodal Deep Boltzmann Machine perform well in experiments owing to the better generalization and nonlinear transformation. However, these DNN models have several disadvantages: (1) They mainly deal with modal fusion while ignoring temporal fusion. (2) Traditional methods fail to consider the connection among frames in the modal fusion. (3) These models aren’t end-to-end structure. We propose a deep temporal architecture, which has not only classical modal fusion, but temporal modal fusion and temporal fusion. Furthermore, the overfitting and learning with small size samples in the AVSR are also studied, so that we propose a set of useful training strategies. The experiments show the superiority of our model and necessity of the training strategies in three datasets: AVLetters, AVLetters2, AVDigits. In the end, we conclude the work. © Springer Nature Singapore Pte Ltd. 2017. |
作者部门 | 光学影像学习与分析中心 |
DOI | 10.1007/978-981-10-7299-4_54 |
收录类别 | EI ; CPCI |
ISBN号 | 9789811072987 |
语种 | 英语 |
ISSN号 | 18650929 |
WOS记录号 | WOS:000449835200054 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/29612 |
专题 | 光谱成像技术研究室 |
通讯作者 | Lu, Xiaoqiang (luxiaoqiang@opt.ac.cn) |
作者单位 | 1.Center for OPTical IMagery Analysis and Learning (OPTIMAL), State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an; Shaanxi; 710119, China 2.University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing; 100049, China |
推荐引用方式 GB/T 7714 | Tian, Chunlin,Yuan, Yuan,Lu, Xiaoqiang,et al. Deep temporal architecture for audiovisual speech recognition[C]:Springer Verlag,2017:650-661. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Deep temporal archit(906KB) | 会议论文 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论