OPT OpenIR  > 光谱成像技术研究室
Hierarchical recurrent neural network for video summarization
Zhao, Bin1; Li, Xuelong2; Lu, Xiaoqiang2
2017-10-23
会议名称25th ACM International Conference on Multimedia, MM 2017
会议录名称MM 2017 - Proceedings of the 2017 ACM Multimedia Conference
页码863-871
会议日期2017-10-23
会议地点Mountain View, CA, United states
出版者Association for Computing Machinery, Inc
产权排序2
摘要

Exploiting the temporal dependency among video frames or subshots is very important for the task of video summarization. Practically, RNN is good at temporal dependency modeling, and has achieved overwhelming performance in many video-based tasks, such as video captioning and classification. However, RNN is not capable enough to handle the video summarization task, since traditional RNNs, including LSTM, can only deal with short videos, while the videos in the summarization task are usually in longer duration. To address this problem, we propose a hierarchical recurrent neural network for video summarization, called H-RNN in this paper. Specifically, it has two layers, where the first layer is utilized to encode short video subshots cut from the original video, and the final hidden state of each subshot is input to the second layer for calculating its confidence to be a key subshot. Compared to traditional RNNs, H-RNN is more suitable to video summarization, since it can exploit long temporal dependency among frames, meanwhile, the computation operations are significantly lessened. The results on two popular datasets, including the Combined dataset and VTW dataset, have demonstrated that the proposed H-RNN outperforms the state-of-the-arts. © 2017 ACM.

作者部门光学影像学习与分析中心
DOI10.1145/3123266.3123328
收录类别EI
ISBN号9781450349062
语种英语
引用统计
被引频次:110[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/29421
专题光谱成像技术研究室
作者单位1.School of Computer Science, Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi'an, Shaanxi; 710072, China
2.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Shaanxi; 710019, China
推荐引用方式
GB/T 7714
Zhao, Bin,Li, Xuelong,Lu, Xiaoqiang. Hierarchical recurrent neural network for video summarization[C]:Association for Computing Machinery, Inc,2017:863-871.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Hierarchical recurre(2048KB)会议论文 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Bin]的文章
[Li, Xuelong]的文章
[Lu, Xiaoqiang]的文章
百度学术
百度学术中相似的文章
[Zhao, Bin]的文章
[Li, Xuelong]的文章
[Lu, Xiaoqiang]的文章
必应学术
必应学术中相似的文章
[Zhao, Bin]的文章
[Li, Xuelong]的文章
[Lu, Xiaoqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。