OPT OpenIR  > 光谱成像技术研究室
Multifeature Anisotropic Orthogonal Gaussian Process for Automatic Age Estimation
Li, Zhifeng1; Gong, Dihong2; Zhu, Kai3; Tao, Dacheng4,5; Li, Xuelong6
作者部门光学影像学习与分析中心
2017-10-01
发表期刊ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY
ISSN2157-6904
卷号9期号:1
产权排序6
摘要

Automatic age estimation is an important yet challenging problem. It has many promising applications in social media. Of the existing age estimation algorithms, the personalized approaches are among the most popular ones. However, most person-specific approaches rely heavily on the availability of training images across different ages for a single subject, which is usually difficult to satisfy in practical application of age estimation. To address this limitation, we first propose a new model called Orthogonal Gaussian Process (OGP), which is not restricted by the number of training samples per person. In addition, without sacrifice of discriminative power, OGP is much more computationally efficient than the standard Gaussian Process. Based on OGP, we then develop an effective age estimation approach, namely anisotropic OGP (A-OGP), to further reduce the estimation error. A-OGP is based on an anisotropic noise level learning scheme that contributes to better age estimation performance. To finally optimize the performance of age estimation, we propose a multifeature A-OGP fusion framework that uses multiple features combined with a random sampling method in the feature space. Extensive experiments on several public domain face aging datasets (FG-NET, MORPH Album1, and MORPH Album 2) are conducted to demonstrate the state-of-the-art estimation accuracy of our new algorithms.

文章类型Article
关键词Age Estimation Face Image
WOS标题词Science & Technology ; Technology
DOI10.1145/3090311
收录类别SCI ; EI
关键词[WOS]FACE IMAGES ; REGRESSION ; RECOGNITION ; FEATURES ; MANIFOLD
语种英语
WOS研究方向Computer Science
项目资助者External Cooperation Program of BIC, the Chinese Academy of Sciences(172644KYSB20160033) ; Australian Research Council(FT-130101457 ; Natural Science Foundation of Guangdong Province(2014A030313688) ; DP-140102164 ; LP-150100671)
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号WOS:000414316900002
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/29386
专题光谱成像技术研究室
作者单位1.Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen, Peoples R China
2.Chinese Acad Sci, Shenzhen Inst Adv Technol, Guangdong Prov Key Lab Comp Vis & Virtual Real Te, Shenzhen, Peoples R China
3.Chinese Univ Hong Kong, Dept Informat Engn, Hong Kong, Hong Kong, Peoples R China
4.Univ Sydney, UBTECH Sydney Artificial Intelligence Ctr, J12,6 Cleveland St, Darlington, NSW 2008, Australia
5.Univ Sydney, Sch Informat Technol, Fac Engn & Informat Technol, J12,6 Cleveland St, Darlington, NSW 2008, Australia
6.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Li, Zhifeng,Gong, Dihong,Zhu, Kai,et al. Multifeature Anisotropic Orthogonal Gaussian Process for Automatic Age Estimation[J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,2017,9(1).
APA Li, Zhifeng,Gong, Dihong,Zhu, Kai,Tao, Dacheng,&Li, Xuelong.(2017).Multifeature Anisotropic Orthogonal Gaussian Process for Automatic Age Estimation.ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,9(1).
MLA Li, Zhifeng,et al."Multifeature Anisotropic Orthogonal Gaussian Process for Automatic Age Estimation".ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 9.1(2017).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Multifeature Anisotr(621KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Zhifeng]的文章
[Gong, Dihong]的文章
[Zhu, Kai]的文章
百度学术
百度学术中相似的文章
[Li, Zhifeng]的文章
[Gong, Dihong]的文章
[Zhu, Kai]的文章
必应学术
必应学术中相似的文章
[Li, Zhifeng]的文章
[Gong, Dihong]的文章
[Zhu, Kai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。