OPT OpenIR  > 光谱成像技术研究室
Constrained Low-Rank Learning Using Least Squares-Based Regularization
Li, Ping1; Yu, Jun1; Wang, Meng2; Zhang, Luming2,3; Cai, Deng4; Li, Xuelong5
作者部门光学影像学习与分析中心
2017-12-01
发表期刊IEEE TRANSACTIONS ON CYBERNETICS
ISSN2168-2267
卷号47期号:12页码:4250-4262
产权排序5
摘要

Low-rank learning has attracted much attention recently due to its efficacy in a rich variety of real-world tasks, e.g., subspace segmentation and image categorization. Most low-rank methods are incapable of capturing low-dimensional subspace for supervised learning tasks, e.g., classification and regression. This paper aims to learn both the discriminant low-rank representation (LRR) and the robust projecting subspace in a supervised manner. To achieve this goal, we cast the problem into a constrained rank minimization framework by adopting the least squares regularization. Naturally, the data label structure tends to resemble that of the corresponding low-dimensional representation, which is derived from the robust subspace projection of clean data by low-rank learning. Moreover, the low-dimensional representation of original data can be paired with some informative structure by imposing an appropriate constraint, e.g., Laplacian regularizer. Therefore, we propose a novel constrained LRR method. The objective function is formulated as a constrained nuclear norm minimization problem, which can be solved by the inexact augmented Lagrange multiplier algorithm. Extensive experiments on image classification, human pose estimation, and robust face recovery have confirmed the superiority of our method.

文章类型Article
关键词Data Representation Image Classification Low-rank Learning Regularization Robust Recovery
WOS标题词Science & Technology ; Technology
DOI10.1109/TCYB.2016.2623638
收录类别SCI ; EI
关键词[WOS]IMAGE CLASSIFICATION ; DATA REPRESENTATION ; GRAPH ; FACTORIZATION ; RECOGNITION ; REDUCTION ; ALGORITHM ; SCALE
语种英语
WOS研究方向Computer Science
项目资助者National Natural Science Foundation of China(61502131 ; Zhejiang Provincial Natural Science Foundation of China(LQ15F020012) ; National Basic Research Program of China (973 Program)(2013CB336500) ; China Scholarship Council ; 61572169 ; 61472266 ; 61472110)
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000415727200020
引用统计
被引频次:18[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/29383
专题光谱成像技术研究室
作者单位1.Hangzhou Dianzi Univ, Sch Comp Sci & Technol, MOE Key Lab Complex Syst Modeling & Simulat, Hangzhou 310018, Zhejiang, Peoples R China
2.Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230009, Anhui, Peoples R China
3.Natl Univ Singapore, Suzhou Res Inst, Suzhou 215123, Peoples R China
4.Zhejiang Univ, Coll Comp Sci, State Key Lab CAD&CG, Hangzhou 310058, Zhejiang, Peoples R China
5.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr Opt Imagery Anal & Learning, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Li, Ping,Yu, Jun,Wang, Meng,et al. Constrained Low-Rank Learning Using Least Squares-Based Regularization[J]. IEEE TRANSACTIONS ON CYBERNETICS,2017,47(12):4250-4262.
APA Li, Ping,Yu, Jun,Wang, Meng,Zhang, Luming,Cai, Deng,&Li, Xuelong.(2017).Constrained Low-Rank Learning Using Least Squares-Based Regularization.IEEE TRANSACTIONS ON CYBERNETICS,47(12),4250-4262.
MLA Li, Ping,et al."Constrained Low-Rank Learning Using Least Squares-Based Regularization".IEEE TRANSACTIONS ON CYBERNETICS 47.12(2017):4250-4262.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Constrained Low-Rank(1790KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Ping]的文章
[Yu, Jun]的文章
[Wang, Meng]的文章
百度学术
百度学术中相似的文章
[Li, Ping]的文章
[Yu, Jun]的文章
[Wang, Meng]的文章
必应学术
必应学术中相似的文章
[Li, Ping]的文章
[Yu, Jun]的文章
[Wang, Meng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。