Survey of Spatio-Temporal Interest Point Detection Algorithms in Video | |
Li, Yanshan1; Xia, Rongjie1; Huang, Qinghua2,3,4; Xie, Weixin1; Li, Xuelong5; Huang, QH (reprint author), Shenzhen Univ, Coll Informat Engn, Shenzhen 518060, Peoples R China. | |
作者部门 | 光学影像学习与分析中心 |
2017 | |
发表期刊 | IEEE ACCESS
![]() |
ISSN | 2169-3536 |
卷号 | 5页码:10323-10331 |
产权排序 | 5 |
摘要 | Recently, increasing attention has been paid to the detection of spatio-temporal interest points (STIPs), which has become a key technique and research focus in the field of computer vision. Its applications include human action recognition, video surveillance, video summarization, and content based video retrieval. Amount of work has been done by many researchers in STIP detection. This paper presents a comprehensive review on STIP detection algorithms. We first propose the detailed introductions and analysis of the existing STIP detection algorithms. STIP detection algorithms are robust in detecting interest points for video in the spatio-temporal domain Next, we summarize the existing challenges in the STIP detection for video, such as low time efficiency, poor robustness with respect to camera movement, illumination change, perspective occlusion, and background clutter. This paper also presents the application situations of STIP and discusses the potential development trends of STIP detection. |
文章类型 | Article |
关键词 | Video Spatio-temporal Interest Point (Stip) Local Invariant Feature Stip Detection Algorithm |
学科领域 | Computer Science, Information Systems |
WOS标题词 | Science & Technology ; Technology |
DOI | 10.1109/ACCESS.2017.2712789 |
收录类别 | SCI ; EI |
关键词[WOS] | INVARIANT FEATURE TRANSFORM ; MULTISPECTRAL IMAGE ; ACTION RECOGNITION ; ANOMALY DETECTION ; SCALE ; FEATURES ; SIFT |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
项目资助者 | National Natural Science Foundation of China(61401286 ; Foundation for Distinguished Young Talents in Higher Education of Guangdong(2014KQNCX132) ; Shenzhen Science and Technology Project(JCYJ20160307143441261) ; National Defense Preliminary Research Project(9140C80050215 0C80341) ; Guangzhou Key Lab of Body Data Science(201605030011) ; Guangdong Provincial Science and Technology Program International Collaborative Projects(2014A050503020) ; 61372007 ; 61571193) |
WOS类目 | Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000404360000027 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/29103 |
专题 | 光谱成像技术研究室 |
通讯作者 | Huang, QH (reprint author), Shenzhen Univ, Coll Informat Engn, Shenzhen 518060, Peoples R China. |
作者单位 | 1.Shenzhen Univ, ATR Natl Key Lab Def Technol, Shenzhen 518060, Peoples R China 2.Shenzhen Univ, Coll Informat Engn, Shenzhen 518060, Peoples R China 3.South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Guangdong, Peoples R China 4.Northwestern Polytech Univ, Ctr Opt Imagery Anal & Learning OPTIMAL, Sch Elect & Informat, Xian 710072, Peoples R China 5.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr Opt Imagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Yanshan,Xia, Rongjie,Huang, Qinghua,et al. Survey of Spatio-Temporal Interest Point Detection Algorithms in Video[J]. IEEE ACCESS,2017,5:10323-10331. |
APA | Li, Yanshan,Xia, Rongjie,Huang, Qinghua,Xie, Weixin,Li, Xuelong,&Huang, QH .(2017).Survey of Spatio-Temporal Interest Point Detection Algorithms in Video.IEEE ACCESS,5,10323-10331. |
MLA | Li, Yanshan,et al."Survey of Spatio-Temporal Interest Point Detection Algorithms in Video".IEEE ACCESS 5(2017):10323-10331. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Survey of Spatio-Tem(1341KB) | 期刊论文 | 作者接受稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论