Robust Joint Graph Sparse Coding for Unsupervised Spectral Feature Selection | |
Zhu, Xiaofeng1; Li, Xuelong2; Zhang, Shichao3; Ju, Chunhua3; Wu, Xindong4; Zhang, SC (reprint author), Zhejiang Gongshang Univ, Sch Comp Sci & Informat Technol, Hangzhou 310018, Zhejiang, Peoples R China. | |
作者部门 | 光学影像学习与分析中心 |
2017-06-01 | |
发表期刊 | IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
![]() |
ISSN | 2162-237X |
卷号 | 28期号:6页码:1263-1275 |
产权排序 | 2 |
摘要 | In this paper, we propose a new unsupervised spectral feature selection model by embedding a graph regularizer into the framework of joint sparse regression for preserving the local structures of data. To do this, we first extract the bases of training data by previous dictionary learning methods and, then, map original data into the basis space to generate their new representations, by proposing a novel joint graph sparse coding (JGSC) model. In JGSC, we first formulate its objective function by simultaneously taking subspace learning and joint sparse regression into account, then, design a new optimization solution to solve the resulting objective function, and further prove the convergence of the proposed solution. Furthermore, we extend JGSC to a robust JGSC (RJGSC) via replacing the least square loss function with a robust loss function, for achieving the same goals and also avoiding the impact of outliers. Finally, experimental results on real data sets showed that both JGSC and RJGSC outperformed the state-of-the-art algorithms in terms of k-nearest neighbor classification performance. |
文章类型 | Article |
关键词 | Dimensionality Reduction Manifold Learning Regression Sparse Coding |
学科领域 | Computer Science, Artificial Intelligence |
WOS标题词 | Science & Technology ; Technology |
DOI | 10.1109/TNNLS.2016.2521602 |
收录类别 | SCI ; EI |
关键词[WOS] | SUPPORT VECTOR MACHINES ; IMAGE ; CLASSIFICATION ; REGRESSION ; FRAMEWORK ; PERSPECTIVE ; CANCER |
语种 | 英语 |
WOS研究方向 | Computer Science ; Engineering |
项目资助者 | China 973 Program(2013CB329404) ; National Natural Science Foundation of China(61450001 ; Guangxi Natural Science Foundation(2012GXNSFGA060004 ; Guangxi 100 Plan ; Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing ; Guangxi Bagui Scholar Teams for Innovation and Research Project ; 61263035 ; 2015GXNSFCB139011) ; 61573270) |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000401982100002 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/28979 |
专题 | 光谱成像技术研究室 |
通讯作者 | Zhang, SC (reprint author), Zhejiang Gongshang Univ, Sch Comp Sci & Informat Technol, Hangzhou 310018, Zhejiang, Peoples R China. |
作者单位 | 1.Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Peoples R China 2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China 3.Zhejiang Gongshang Univ, Sch Comp Sci & Informat Technol, Hangzhou 310018, Zhejiang, Peoples R China 4.Univ Vermont, Dept Comp Sci, Burlington, VT 05405 USA |
推荐引用方式 GB/T 7714 | Zhu, Xiaofeng,Li, Xuelong,Zhang, Shichao,et al. Robust Joint Graph Sparse Coding for Unsupervised Spectral Feature Selection[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2017,28(6):1263-1275. |
APA | Zhu, Xiaofeng,Li, Xuelong,Zhang, Shichao,Ju, Chunhua,Wu, Xindong,&Zhang, SC .(2017).Robust Joint Graph Sparse Coding for Unsupervised Spectral Feature Selection.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,28(6),1263-1275. |
MLA | Zhu, Xiaofeng,et al."Robust Joint Graph Sparse Coding for Unsupervised Spectral Feature Selection".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 28.6(2017):1263-1275. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Robust Joint Graph S(2273KB) | 期刊论文 | 作者接受稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论