OPT OpenIR  > 光谱成像技术研究室
Self-weighted spectral clustering, with parameter-free constraint
Zhang, Rui1,2; Nie, Feiping1,2; Li, Xuelong3; Nie, FP
作者部门光学影像学习与分析中心
2017-06-07
发表期刊NEUROCOMPUTING
ISSN0925-2312
卷号241页码:164-170
产权排序3
摘要

The constrained spectral clustering (or known as the semi-supervised spectral clustering) focuses on enhancing the clustering capability by utilizing the side information. In this paper, a novel constrained spectral clustering method is proposed based on deriving a sparse parameter-free similarity. Different from other works, the proposed method transforms the given pairwise constraints into the intrinsic graph similarity and the penalty graph similarity respectively instead of incorporating them into one single similarity. Besides, the optimal weight can be automatically achieved to balance the graph optimization problems between the intrinsic graph and the penalty graph. Equipped with a general framework of efficiently unraveling the bi-objective optimization, the proposed method could obtain both ratio cut and normalized cut clusterings via updating the weighted Laplacian matrix until convergence. Moreover, the proposed method is equivalent to the spectral clustering, when no side information is provided. Consequently, the effectiveness and the superiority of the proposed method are further verified both analytically and empirically. (C) 2017 Elsevier B.V. All rights reserved.

文章类型Article
关键词Constrained Spectral Clustering Parameter-free Similarity Quadratic Weighted Optimization
学科领域Computer Science, Artificial Intelligence
WOS标题词Science & Technology ; Technology
DOI10.1016/j.neucom.2017.01.085
收录类别SCI ; EI
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000398752700016
引用统计
被引频次:23[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/28890
专题光谱成像技术研究室
通讯作者Nie, FP
作者单位1.Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
2.Northwestern Polytech Univ, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710072, Shaanxi, Peoples R China
3.Chinese Acad Sci, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Rui,Nie, Feiping,Li, Xuelong,et al. Self-weighted spectral clustering, with parameter-free constraint[J]. NEUROCOMPUTING,2017,241:164-170.
APA Zhang, Rui,Nie, Feiping,Li, Xuelong,&Nie, FP.(2017).Self-weighted spectral clustering, with parameter-free constraint.NEUROCOMPUTING,241,164-170.
MLA Zhang, Rui,et al."Self-weighted spectral clustering, with parameter-free constraint".NEUROCOMPUTING 241(2017):164-170.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Self-weighted spectr(688KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Rui]的文章
[Nie, Feiping]的文章
[Li, Xuelong]的文章
百度学术
百度学术中相似的文章
[Zhang, Rui]的文章
[Nie, Feiping]的文章
[Li, Xuelong]的文章
必应学术
必应学术中相似的文章
[Zhang, Rui]的文章
[Nie, Feiping]的文章
[Li, Xuelong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。