Self-weighted spectral clustering, with parameter-free constraint | |
Zhang, Rui1,2; Nie, Feiping1,2; Li, Xuelong3; Nie, FP | |
作者部门 | 光学影像学习与分析中心 |
2017-06-07 | |
发表期刊 | NEUROCOMPUTING
![]() |
ISSN | 0925-2312 |
卷号 | 241页码:164-170 |
产权排序 | 3 |
摘要 | The constrained spectral clustering (or known as the semi-supervised spectral clustering) focuses on enhancing the clustering capability by utilizing the side information. In this paper, a novel constrained spectral clustering method is proposed based on deriving a sparse parameter-free similarity. Different from other works, the proposed method transforms the given pairwise constraints into the intrinsic graph similarity and the penalty graph similarity respectively instead of incorporating them into one single similarity. Besides, the optimal weight can be automatically achieved to balance the graph optimization problems between the intrinsic graph and the penalty graph. Equipped with a general framework of efficiently unraveling the bi-objective optimization, the proposed method could obtain both ratio cut and normalized cut clusterings via updating the weighted Laplacian matrix until convergence. Moreover, the proposed method is equivalent to the spectral clustering, when no side information is provided. Consequently, the effectiveness and the superiority of the proposed method are further verified both analytically and empirically. (C) 2017 Elsevier B.V. All rights reserved. |
文章类型 | Article |
关键词 | Constrained Spectral Clustering Parameter-free Similarity Quadratic Weighted Optimization |
学科领域 | Computer Science, Artificial Intelligence |
WOS标题词 | Science & Technology ; Technology |
DOI | 10.1016/j.neucom.2017.01.085 |
收录类别 | SCI ; EI |
语种 | 英语 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000398752700016 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/28890 |
专题 | 光谱成像技术研究室 |
通讯作者 | Nie, FP |
作者单位 | 1.Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China 2.Northwestern Polytech Univ, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710072, Shaanxi, Peoples R China 3.Chinese Acad Sci, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China |
推荐引用方式 GB/T 7714 | Zhang, Rui,Nie, Feiping,Li, Xuelong,et al. Self-weighted spectral clustering, with parameter-free constraint[J]. NEUROCOMPUTING,2017,241:164-170. |
APA | Zhang, Rui,Nie, Feiping,Li, Xuelong,&Nie, FP.(2017).Self-weighted spectral clustering, with parameter-free constraint.NEUROCOMPUTING,241,164-170. |
MLA | Zhang, Rui,et al."Self-weighted spectral clustering, with parameter-free constraint".NEUROCOMPUTING 241(2017):164-170. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Self-weighted spectr(688KB) | 期刊论文 | 作者接受稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论