Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection | |
Li, Zuhe1,2; Fan, Yangyu1; Liu, Weihua3; Yu, Zeqi2; Wang, Fengqin2; Li, Zuhe (zuheli@126.com) | |
作者部门 | 光谱成像技术实验室 |
2017 | |
发表期刊 | JOURNAL OF ELECTRONIC IMAGING
![]() |
ISSN | 1017-9909 |
卷号 | 26期号:1 |
产权排序 | 3 |
摘要 | We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance. (C) 2017 SPIE and IS&T |
文章类型 | Article |
关键词 | Textile Image Emotional Image Classification Convolutional Autoencoder Domain Adaptation Feature Selection |
WOS标题词 | Science & Technology ; Technology ; Physical Sciences |
DOI | 10.1117/1.JEI.26.1.013022 |
收录类别 | SCI ; EI |
关键词[WOS] | EMPIRICAL MODE DECOMPOSITION ; TEXTURE CLASSIFICATION ; PATTERN |
语种 | 英语 |
WOS研究方向 | Engineering ; Optics ; Imaging Science & Photographic Technology |
项目资助者 | National Natural Science Foundation of China(61601411 ; Science and Technology Innovation Engineering Program for Shaanxi Provincial Key Laboratories(2013SZS15-K02) ; Key Science Foundation of Henan province(15A510035) ; 61501391) |
WOS类目 | Engineering, Electrical & Electronic ; Optics ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000397059800052 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/28660 |
专题 | 光谱成像技术研究室 |
通讯作者 | Li, Zuhe (zuheli@126.com) |
作者单位 | 1.Northwestern Polytech Univ, Sch Elect & Informat, Xian, Peoples R China 2.Zhengzhou Univ Light Ind, Sch Comp & Commun Engn, Zhengzhou, Peoples R China 3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Zuhe,Fan, Yangyu,Liu, Weihua,et al. Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection[J]. JOURNAL OF ELECTRONIC IMAGING,2017,26(1). |
APA | Li, Zuhe,Fan, Yangyu,Liu, Weihua,Yu, Zeqi,Wang, Fengqin,&Li, Zuhe .(2017).Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection.JOURNAL OF ELECTRONIC IMAGING,26(1). |
MLA | Li, Zuhe,et al."Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection".JOURNAL OF ELECTRONIC IMAGING 26.1(2017). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Emotional textile im(10208KB) | 期刊论文 | 作者接受稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论