Block Principal Component Analysis With Nongreedy l(1)-Norm Maximization | |
Li, Bing Nan1; Yu, Qiang2; Wang, Rong2; Xiang, Kui3; Wang, Meng4; Li, Xuelong5![]() | |
作者部门 | 光学影像学习与分析中心 |
2016-11-01 | |
发表期刊 | IEEE TRANSACTIONS ON CYBERNETICS
![]() |
ISSN | 2168-2267 |
卷号 | 46期号:11页码:2543-2547 |
产权排序 | 5 |
摘要 | Block principal component analysis with l(1)-norm (BPCA-L1) has demonstrated its effectiveness in a lot of visual classification and data mining tasks. However, the greedy strategy for solving the l(1)-norm maximization problem is prone to being struck in local solutions. In this paper, we propose a BPCA with nongreedy l(1)-norm maximization, which obtains better solutions than BPCA-L1 with all the projection directions optimized simultaneously. Other than BPCA-L1, the new algorithm has been evaluated against some popular principal component analysis (PCA) algorithms including PCA-L1 and 2-D PCA-L1 on a variety of benchmark data sets. The results demonstrate the effectiveness of the proposed method. |
文章类型 | Article |
关键词 | Block Principal Component Analysis (Bpca) Dimensionality Reduction l(1)-norm Nongreedy Strategy Outliers |
学科领域 | Computer Science, Artificial Intelligence |
WOS标题词 | Science & Technology ; Technology |
DOI | 10.1109/TCYB.2015.2479645 |
收录类别 | SCI ; EI |
关键词[WOS] | FACE RECOGNITION ; 2-DIMENSIONAL PCA ; IMAGE-ANALYSIS ; MODULAR PCA ; REPRESENTATION ; LAPLACIANFACES ; L1-NORM ; 2DPCA |
语种 | 英语 |
WOS研究方向 | Computer Science |
项目资助者 | National Natural Science Foundation of China(61271123 ; China Postdoctoral Science Foundation(2014M562636) ; Key Research Program of the Chinese Academy of Sciences(KGZD-EW-T03) ; 61401471 ; 61571176 ; 91120302 ; 61511140099) |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Cybernetics |
WOS记录号 | WOS:000386227000013 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/28417 |
专题 | 光谱成像技术研究室 |
通讯作者 | Li, BN (reprint author), Hefei Univ Technol, Dept Biomed Engn, Hefei 230009, Peoples R China. |
作者单位 | 1.Hefei Univ Technol, Dept Biomed Engn, Hefei 230009, Peoples R China 2.Xian Res Inst Hitech, Xian 710025, Peoples R China 3.Wuhan Univ Technol, Sch Automat, Wuhan 430070, Peoples R China 4.Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230009, Peoples R China 5.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Bing Nan,Yu, Qiang,Wang, Rong,et al. Block Principal Component Analysis With Nongreedy l(1)-Norm Maximization[J]. IEEE TRANSACTIONS ON CYBERNETICS,2016,46(11):2543-2547. |
APA | Li, Bing Nan.,Yu, Qiang.,Wang, Rong.,Xiang, Kui.,Wang, Meng.,...&Li, BN .(2016).Block Principal Component Analysis With Nongreedy l(1)-Norm Maximization.IEEE TRANSACTIONS ON CYBERNETICS,46(11),2543-2547. |
MLA | Li, Bing Nan,et al."Block Principal Component Analysis With Nongreedy l(1)-Norm Maximization".IEEE TRANSACTIONS ON CYBERNETICS 46.11(2016):2543-2547. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Block Principal Comp(1305KB) | 期刊论文 | 作者接受稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论