OPT OpenIR  > 光谱成像技术研究室
Cascade Learning by Optimally Partitioning
Pang, Yanwei1; Cao, Jiale1; Li, Xuelong2
作者部门光学影像学习与分析中心
2017-12-01
发表期刊IEEE TRANSACTIONS ON CYBERNETICS
ISSN2168-2267
卷号47期号:12页码:4148-4161
产权排序2
摘要

Cascaded AdaBoost classifier is a well-known efficient object detection algorithm. The cascade structure has many parameters to be determined. Most of existing cascade learning algorithms are designed by assigning detection rate and false positive rate to each stage either dynamically or statically. Their objective functions are not directly related to minimum computation cost. These algorithms are not guaranteed to have optimal solution in the sense of minimizing computation cost. On the assumption that a strong classifier is given, in this paper, we propose an optimal cascade learning algorithm (iCascade) which iteratively partitions the strong classifiers into two parts until predefined number of stages are generated. iCascade searches the optimal partition point r(i) of each stage by directly minimizing the computation cost of the cascade. Theorems are provided to guarantee the existence of the unique optimal solution. Theorems are also given for the proposed efficient algorithm of searching optimal parameters ri. Once a new stage is added, the parameter ri for each stage decreases gradually as iteration proceeds, which we call decreasing phenomenon. Moreover, with the goal of minimizing computation cost, we develop an effective algorithm for setting the optimal threshold of each stage. In addition, we prove in theory why more new weak classifiers in the current stage are required compared to that of the previous stage. Experimental results on face detection and pedestrian detection demonstrate the effectiveness and efficiency of the proposed algorithm.

文章类型Article
关键词Adaboost Cascade Learning Classifier Design Object Detection
WOS标题词Science & Technology ; Technology
DOI10.1109/TCYB.2016.2601438
收录类别SCI ; EI
关键词[WOS]FACE DETECTION ; OBJECT DETECTION ; CLASSIFIERS ; DESIGN
语种英语
WOS研究方向Computer Science
项目资助者National Basic Research Program of China (973 Program)(2014CB340400) ; National Natural Science Foundation of China(61632081)
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000415727200012
引用统计
被引频次:28[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/28361
专题光谱成像技术研究室
作者单位1.Tianjin Univ, Sch Elect Informat Engn, Tianjin 300072, Peoples R China
2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr Opt Imagery Anal & Learning, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Pang, Yanwei,Cao, Jiale,Li, Xuelong. Cascade Learning by Optimally Partitioning[J]. IEEE TRANSACTIONS ON CYBERNETICS,2017,47(12):4148-4161.
APA Pang, Yanwei,Cao, Jiale,&Li, Xuelong.(2017).Cascade Learning by Optimally Partitioning.IEEE TRANSACTIONS ON CYBERNETICS,47(12),4148-4161.
MLA Pang, Yanwei,et al."Cascade Learning by Optimally Partitioning".IEEE TRANSACTIONS ON CYBERNETICS 47.12(2017):4148-4161.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Cascade Learning by (1738KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pang, Yanwei]的文章
[Cao, Jiale]的文章
[Li, Xuelong]的文章
百度学术
百度学术中相似的文章
[Pang, Yanwei]的文章
[Cao, Jiale]的文章
[Li, Xuelong]的文章
必应学术
必应学术中相似的文章
[Pang, Yanwei]的文章
[Cao, Jiale]的文章
[Li, Xuelong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。