Cascade Learning by Optimally Partitioning | |
Pang, Yanwei1; Cao, Jiale1; Li, Xuelong2![]() | |
作者部门 | 光学影像学习与分析中心 |
2017-12-01 | |
发表期刊 | IEEE TRANSACTIONS ON CYBERNETICS
![]() |
ISSN | 2168-2267 |
卷号 | 47期号:12页码:4148-4161 |
产权排序 | 2 |
摘要 | Cascaded AdaBoost classifier is a well-known efficient object detection algorithm. The cascade structure has many parameters to be determined. Most of existing cascade learning algorithms are designed by assigning detection rate and false positive rate to each stage either dynamically or statically. Their objective functions are not directly related to minimum computation cost. These algorithms are not guaranteed to have optimal solution in the sense of minimizing computation cost. On the assumption that a strong classifier is given, in this paper, we propose an optimal cascade learning algorithm (iCascade) which iteratively partitions the strong classifiers into two parts until predefined number of stages are generated. iCascade searches the optimal partition point r(i) of each stage by directly minimizing the computation cost of the cascade. Theorems are provided to guarantee the existence of the unique optimal solution. Theorems are also given for the proposed efficient algorithm of searching optimal parameters ri. Once a new stage is added, the parameter ri for each stage decreases gradually as iteration proceeds, which we call decreasing phenomenon. Moreover, with the goal of minimizing computation cost, we develop an effective algorithm for setting the optimal threshold of each stage. In addition, we prove in theory why more new weak classifiers in the current stage are required compared to that of the previous stage. Experimental results on face detection and pedestrian detection demonstrate the effectiveness and efficiency of the proposed algorithm. |
文章类型 | Article |
关键词 | Adaboost Cascade Learning Classifier Design Object Detection |
WOS标题词 | Science & Technology ; Technology |
DOI | 10.1109/TCYB.2016.2601438 |
收录类别 | SCI ; EI |
关键词[WOS] | FACE DETECTION ; OBJECT DETECTION ; CLASSIFIERS ; DESIGN |
语种 | 英语 |
WOS研究方向 | Computer Science |
项目资助者 | National Basic Research Program of China (973 Program)(2014CB340400) ; National Natural Science Foundation of China(61632081) |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Cybernetics |
WOS记录号 | WOS:000415727200012 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/28361 |
专题 | 光谱成像技术研究室 |
作者单位 | 1.Tianjin Univ, Sch Elect Informat Engn, Tianjin 300072, Peoples R China 2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr Opt Imagery Anal & Learning, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China |
推荐引用方式 GB/T 7714 | Pang, Yanwei,Cao, Jiale,Li, Xuelong. Cascade Learning by Optimally Partitioning[J]. IEEE TRANSACTIONS ON CYBERNETICS,2017,47(12):4148-4161. |
APA | Pang, Yanwei,Cao, Jiale,&Li, Xuelong.(2017).Cascade Learning by Optimally Partitioning.IEEE TRANSACTIONS ON CYBERNETICS,47(12),4148-4161. |
MLA | Pang, Yanwei,et al."Cascade Learning by Optimally Partitioning".IEEE TRANSACTIONS ON CYBERNETICS 47.12(2017):4148-4161. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Cascade Learning by (1738KB) | 期刊论文 | 作者接受稿 | 限制开放 | CC BY-NC-SA | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论