OPT OpenIR  > 光谱成像技术研究室
A Novel Spatial-Spectral Sparse Representation for Hyperspectral Image Classification Based on Neighborhood Segmentation
Wang Cai-ling1,2; Wang Hong-wei3; Hu Bing-liang1; Wen Jia4; Xu Jun5; Li Xiang-juan2
作者部门光谱成像技术实验室
2016-09-01
发表期刊SPECTROSCOPY AND SPECTRAL ANALYSIS
ISSN1000-0593
卷号36期号:9页码:2919-2924
产权排序1
摘要

Traditional hyperspectral image classification algorithms focus on spectral' information application, however, with the increase of spatial resolution of hyperspectral remote sensing images, hyperspectral imaging presents clustering properties on spatial domain for the same category. It is critical for hyperspectral image classification algorithms to use spatial information in order to improve the classification accuracy. However, the marginal differences of different categories display more obviously. If it is introduced directly into the spatial-spectral sparse representation for image classification without the selection of neighborhood pixels, the classification error and the computation time will increase. This paper presents a spatial-spectral joint sparse representation classification algorithm based on neighborhood segmentation. The algorithm calculates the similarity with spectral angel in order to choose proper neighborhood pixel into spatial-spectral joint sparse representation model. With simultaneous subspace pursuit and simultaneous orthogonal matching pursuit to solve the model, the classification is determined by computing the minimum reconstruction error between testing samples and training pixels. Two typical hyperspectral images from AVIRIS and ROSIS are chosen for simulation experiment and results display that the classification accuracy of two images both improves as neighborhood segmentation threshold increasing. It concludes that neighborhood segmentation is necessary for joint sparse representation classification.

文章类型Article
关键词Hyperspectral Image Processing Sparse Representation Neighborhood Clustering Neighborhood Segmentation Minimum Reconstruction Error
WOS标题词Science & Technology ; Technology
DOI10.3964/j.issn.1000-0593(2016)09-2919-06
收录类别SCI ; EI
语种英语
WOS研究方向Spectroscopy
WOS类目Spectroscopy
WOS记录号WOS:000383306800036
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/28219
专题光谱成像技术研究室
作者单位1.Chinese Acad Sci, Key Lab Spectral Imaging, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
2.Xian Shiyou Univ, Sch Comp Sci, Xian 710065, Peoples R China
3.Engn Univ CAPF, Xian 710086, Peoples R China
4.Chinese Acad Sci, Inst Software, Beijing 100080, Peoples R China
5.East China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
推荐引用方式
GB/T 7714
Wang Cai-ling,Wang Hong-wei,Hu Bing-liang,et al. A Novel Spatial-Spectral Sparse Representation for Hyperspectral Image Classification Based on Neighborhood Segmentation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS,2016,36(9):2919-2924.
APA Wang Cai-ling,Wang Hong-wei,Hu Bing-liang,Wen Jia,Xu Jun,&Li Xiang-juan.(2016).A Novel Spatial-Spectral Sparse Representation for Hyperspectral Image Classification Based on Neighborhood Segmentation.SPECTROSCOPY AND SPECTRAL ANALYSIS,36(9),2919-2924.
MLA Wang Cai-ling,et al."A Novel Spatial-Spectral Sparse Representation for Hyperspectral Image Classification Based on Neighborhood Segmentation".SPECTROSCOPY AND SPECTRAL ANALYSIS 36.9(2016):2919-2924.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A novel spatial-spec(688KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang Cai-ling]的文章
[Wang Hong-wei]的文章
[Hu Bing-liang]的文章
百度学术
百度学术中相似的文章
[Wang Cai-ling]的文章
[Wang Hong-wei]的文章
[Hu Bing-liang]的文章
必应学术
必应学术中相似的文章
[Wang Cai-ling]的文章
[Wang Hong-wei]的文章
[Hu Bing-liang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。