OPT OpenIR  > 光谱成像技术研究室
Projective robust nonnegative factorization
Lu, Yuwu1; Lai, Zhihui2; Xu, Yong3; You, Jane4; Li, Xuelong5; Yuan, Chun1
作者部门光学影像学习与分析中心
2016-10-10
发表期刊INFORMATION SCIENCES
ISSN0020-0255
卷号364页码:16-32
产权排序5
摘要Nonnegative matrix factorization (NMF) has been successfully used in many fields as a low-dimensional representation method. Projective nonnegative matrix factorization (PNMF) is a variant of NMF that was proposed to learn a subspace for feature extraction. However, both original NMF and PNMF are sensitive to noise and are unsuitable for feature extraction if data is grossly corrupted. In order to improve the robustness of NMF, a framework named Projective Robust Nonnegative Factorization (PRNF) is proposed in this paper for robust image feature extraction and classification. Since learned projections can weaken noise disturbances, PRNF is more suitable for classification and feature extraction. In order to preserve the geometrical structure of original data, PRNF introduces a graph regularization term which encodes geometrical structure. In the PRNF framework, three algorithms are proposed that add a sparsity constraint on the noise matrix based on L-1/2 norm, L-1 norm, and L-2,L-1 norm, respectively. Robustness and classification performance of the three proposed algorithms are verified with experiments on four face image databases and results are compared with state-of-the-art robust NMF-based algorithms. Experimental results demonstrate the robustness and effectiveness of the algorithms for image classification and feature extraction. (C) 2016 Elsevier Inc. All rights reserved.
文章类型Article
关键词Robust Nonnegative Matrix Factorization Graph Regularization Face Recognition
WOS标题词Science & Technology ; Technology
DOI10.1016/j.ins.2016.05.001
收录类别SCI ; EI
关键词[WOS]MATRIX FACTORIZATION ; IMAGE REPRESENTATION ; ALGORITHM ; PARTS
语种英语
WOS研究方向Computer Science
项目资助者Natural Science Foundation of China(61203376 ; National Significant Science and Technology Projects of China(2013ZX01039001-002-003) ; China Postdoctoral Science Foundation(2016M590100) ; Shenzhen Municipal Science and Technology Innovation Council(JCYJ20130329151843309 ; 61375012 ; JCYJ20140904154630436 ; 61362031 ; JCYJ20150330155220591) ; 61300032 ; 61170253 ; U1433112)
WOS类目Computer Science, Information Systems
WOS记录号WOS:000378969400002
引用统计
被引频次:25[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/28168
专题光谱成像技术研究室
作者单位1.Tsinghua Univ, Tsinghua CUHK Joint Res Ctr Media Sci Technol & S, Grad Sch Shenzhen, Beijing, Peoples R China
2.Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
3.Harbin Inst Technol, Shenzhen Grad Sch, Biocomp Res Ctr, Harbin, Peoples R China
4.Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R China
5.Chinese Acad Sci, State Key Lab Transient Opt & Photon, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Lu, Yuwu,Lai, Zhihui,Xu, Yong,et al. Projective robust nonnegative factorization[J]. INFORMATION SCIENCES,2016,364:16-32.
APA Lu, Yuwu,Lai, Zhihui,Xu, Yong,You, Jane,Li, Xuelong,&Yuan, Chun.(2016).Projective robust nonnegative factorization.INFORMATION SCIENCES,364,16-32.
MLA Lu, Yuwu,et al."Projective robust nonnegative factorization".INFORMATION SCIENCES 364(2016):16-32.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Projective robust no(1389KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, Yuwu]的文章
[Lai, Zhihui]的文章
[Xu, Yong]的文章
百度学术
百度学术中相似的文章
[Lu, Yuwu]的文章
[Lai, Zhihui]的文章
[Xu, Yong]的文章
必应学术
必应学术中相似的文章
[Lu, Yuwu]的文章
[Lai, Zhihui]的文章
[Xu, Yong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。