OPT OpenIR  > 光谱成像技术研究室
A New Spectral-Spatial Algorithm Method for Hyperspectral Image Target Detection
Wang Cai-ling1,2; Wang Hong-wei3; Hu Bing-liang1; Wen Jia4; Xu Jun5; Li Xiang-juan2
作者部门光谱成像技术实验室
2016-04-01
发表期刊SPECTROSCOPY AND SPECTRAL ANALYSIS
ISSN1000-0593
卷号36期号:4页码:1163-1169
产权排序1
摘要With high-resolution spatial information and continuous spectrum information, hyperspectral remote sensing image has a unique advantage in the field of target detection. Traditional hyperspectral remote sensing image target detection methods emphasis on using spectral information to determine deterministic algorithm and statistical algorithms. Deterministic algorithms find the target by calculating the distance between the target spectrum and detected spectrum however, they are unable to detect sub-pixel target and are easily affected by noise. Statistical methods which calculate background statistical characteristics to detect abnormal point as target. It can detect subpixel target targets and small targets better thanbig size target,. With the spatial resolution increasing, subpixel target detection target has gradually grown to a single pixel and multi-pixel target. At this point, hyperspectral image usually has large homogeneous regions where the neighboring pixels wihin the regions consist of the same type of materials and have a similar spectral characteristics, therefore, the spatial information should be needed to incorporate into the algorithm for targe detection. This paper proposes an algorithm for hyperspectral target detection combined spectrum characteristics and spatial characteristics. The algorithm is based on traditional target detection operator and combined neighborhood clustering statistics. Firstly, the algorithm uses target detection operator to divided hyperspectral image into a potential target region and background region. Then, it calculates the centroid of the potential target area. Finally, as the centroid for neighborhood clustering center to dust data in order to exclud background from potential target area, through iterative calculation to obtain the final results of the target detection. The traditional statistics algorithms defines the total image as background area in order to extract background statistics features, and the algorithm propsed devided the total image into background part and potential target part, which cut off the target interference for background statistics feature extraction. Compared with CEM operators and ACE operators, the algorithm proposed outperforms than traditional operators in big target detection.
文章类型Article
关键词Target Detection Spatial-spectral Algorithm Hyperspectral Image Processing Neighborhood Clustering Statistical Operators
WOS标题词Science & Technology ; Technology
DOI10.3964/j.issn.1000-0593(2016)04-1163-07
收录类别SCI ; EI
语种中文
WOS研究方向Spectroscopy
WOS类目Spectroscopy
WOS记录号WOS:000374625000047
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/28128
专题光谱成像技术研究室
作者单位1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging, Xian 710119, Peoples R China
2.Xian Shiyou Univ, Sch Comp Sci, Xian 710065, Peoples R China
3.Chinese Peoples Armed Police Force, Engn Univ, Xian 710086, Peoples R China
4.Chinese Acad Sci, Inst Software, Beijing 100080, Peoples R China
5.East China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
推荐引用方式
GB/T 7714
Wang Cai-ling,Wang Hong-wei,Hu Bing-liang,et al. A New Spectral-Spatial Algorithm Method for Hyperspectral Image Target Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS,2016,36(4):1163-1169.
APA Wang Cai-ling,Wang Hong-wei,Hu Bing-liang,Wen Jia,Xu Jun,&Li Xiang-juan.(2016).A New Spectral-Spatial Algorithm Method for Hyperspectral Image Target Detection.SPECTROSCOPY AND SPECTRAL ANALYSIS,36(4),1163-1169.
MLA Wang Cai-ling,et al."A New Spectral-Spatial Algorithm Method for Hyperspectral Image Target Detection".SPECTROSCOPY AND SPECTRAL ANALYSIS 36.4(2016):1163-1169.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
一种新的空谱联合探测高光谱影像目标探测算(512KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang Cai-ling]的文章
[Wang Hong-wei]的文章
[Hu Bing-liang]的文章
百度学术
百度学术中相似的文章
[Wang Cai-ling]的文章
[Wang Hong-wei]的文章
[Hu Bing-liang]的文章
必应学术
必应学术中相似的文章
[Wang Cai-ling]的文章
[Wang Hong-wei]的文章
[Hu Bing-liang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。