OPT OpenIR  > 光谱成像技术研究室
Congested scene classification via efficient unsupervised feature learning and density estimation
Yuan, Yuan1; Wan, Jia2,3; Wang, Qi2,3
作者部门光学影像学习与分析中心
2016-08-01
发表期刊PATTERN RECOGNITION
ISSN0031-3203
卷号56页码:159-169
产权排序1
摘要An unsupervised learning algorithm with density information considered is proposed for congested scene classification. Though many works have been proposed to address general scene classification during the past years, congested scene classification is not adequately studied yet. In this paper, an efficient unsupervised feature learning approach with density information encoded is proposed to solve this problem. Based on spherical k-means, a feature selection process is proposed to eliminate the learned noisy features. Then, local density information which better reflects the crowdedness of a scene is encoded by a novel feature pooling strategy. The proposed method is evaluated on the assembled congested scene data set and UIUC-sports data set, and intensive comparative experiments justify the effectiveness of the proposed approach. (C) 2016 Elsevier Ltd. All rights reserved.
文章类型Article
关键词Computer Vision Unsupervised Feature Learning Scene Classification Density Estimation Spherical K-means Feature Pooling
WOS标题词Science & Technology ; Technology
DOI10.1016/j.patcog.2016.03.020
收录类别SCI ; EI
关键词[WOS]IMAGE CLASSIFICATION ; OBJECT DETECTION ; CONTEXT ; SCALE ; MODEL
语种英语
WOS研究方向Computer Science ; Engineering
项目资助者National Basic Research Program of China (Youth 973 Program)(2013CB336500) ; State Key Program of National Natural Science of China(61232010) ; National Natural Science Foundation of China(61105012 ; Fundamental Research Funds for the Central Universities(3102014JC02020G07 ; Natural Science Foundation Research Project of Shaanxi Province(2015JM6264) ; Open Research Fund of Key Laboratory of Spectral Imaging Technology, Chinese Academy of Sciences ; 61379094) ; 3102015BJ(II)JJZ01)
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000375360900013
引用统计
被引频次:45[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/28102
专题光谱成像技术研究室
作者单位1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China
2.Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
3.Northwestern Polytech Univ, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710072, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Yuan, Yuan,Wan, Jia,Wang, Qi. Congested scene classification via efficient unsupervised feature learning and density estimation[J]. PATTERN RECOGNITION,2016,56:159-169.
APA Yuan, Yuan,Wan, Jia,&Wang, Qi.(2016).Congested scene classification via efficient unsupervised feature learning and density estimation.PATTERN RECOGNITION,56,159-169.
MLA Yuan, Yuan,et al."Congested scene classification via efficient unsupervised feature learning and density estimation".PATTERN RECOGNITION 56(2016):159-169.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Congested scene clas(2339KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yuan, Yuan]的文章
[Wan, Jia]的文章
[Wang, Qi]的文章
百度学术
百度学术中相似的文章
[Yuan, Yuan]的文章
[Wan, Jia]的文章
[Wang, Qi]的文章
必应学术
必应学术中相似的文章
[Yuan, Yuan]的文章
[Wan, Jia]的文章
[Wang, Qi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。