OPT OpenIR  > 光谱成像技术研究室
Mutual Component Analysis for Heterogeneous Face Recognition
Li, Zhifeng1; Gong, Dihong1; Li, Qiang2; Tao, Dacheng2; Li, Xuelong3
作者部门光学影像学习与分析中心
2016-04-01
发表期刊ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY
ISSN2157-6904
卷号7期号:3
产权排序3
摘要Heterogeneous face recognition, also known as cross-modality face recognition or intermodality face recognition, refers to matching two face images from alternative image modalities. Since face images from different image modalities of the same person are associated with the same face object, there should be mutual components that reflect those intrinsic face characteristics that are invariant to the image modalities. Motivated by this rationality, we propose a novel approach called Mutual Component Analysis (MCA) to infer the mutual components for robust heterogeneous face recognition. In the MCA approach, a generative model is first proposed to model the process of generating face images in different modalities, and then an Expectation Maximization (EM) algorithm is designed to iteratively learn the model parameters. The learned generative model is able to infer the mutual components (which we call the hidden factor, where hidden means the factor is unreachable and invisible, and can only be inferred from observations) that are associated with the person's identity, thus enabling fast and effective matching for cross-modality face recognition. To enhance recognition performance, we propose an MCA-based multiclassifier framework using multiple local features. Experimental results show that our new approach significantly outperforms the state-of-the-art results on two typical application scenarios: sketch-to-photo and infrared-to-visible face recognition.
文章类型Article
关键词Algorithms Performance Face Recognition Heterogeneous Face Recognition Mutual Component Analysis (Mca)
学科领域计算机应用其他学科(含图像处理)
WOS标题词Science & Technology ; Technology
DOI10.1145/2807705
收录类别SCI ; EI
关键词[WOS]DISCRIMINANT-ANALYSIS ; SPECTRAL REGRESSION ; SKETCH RECOGNITION ; CLASSIFICATION ; PERFORMANCE ; FRAMEWORK
语种英语
WOS研究方向Computer Science
项目资助者National Natural Science Foundation of China(61103164 ; Natural Science Foundation of Guangdong Province(2014A030313688) ; Australian Research Council Projects(FT-130101457 ; Key Laboratory of Human-Machine Intelligence-Synergy Systems ; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences ; Guangdong Innovative Research Team Program(201001D0104648280) ; Key Research Program of the Chinese Academy of Sciences(KGZD-EW-T03) ; Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong(MMT-8115038) ; 61125106) ; LP-140100569)
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号WOS:000373911200003
引用统计
被引频次:53[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/27880
专题光谱成像技术研究室
作者单位1.Chinese Acad Sci, Shenzhen Inst Adv Technol, Beijing 100864, Peoples R China
2.Univ Technol Sydney, Fac Engn & Informat Technol, Ctr Quantum Computat & Intelligent Syst, 81 Broadway, Ultimo, NSW 2007, Australia
3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Li, Zhifeng,Gong, Dihong,Li, Qiang,et al. Mutual Component Analysis for Heterogeneous Face Recognition[J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,2016,7(3).
APA Li, Zhifeng,Gong, Dihong,Li, Qiang,Tao, Dacheng,&Li, Xuelong.(2016).Mutual Component Analysis for Heterogeneous Face Recognition.ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,7(3).
MLA Li, Zhifeng,et al."Mutual Component Analysis for Heterogeneous Face Recognition".ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 7.3(2016).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Mutual component ana(886KB)期刊论文作者接受稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Zhifeng]的文章
[Gong, Dihong]的文章
[Li, Qiang]的文章
百度学术
百度学术中相似的文章
[Li, Zhifeng]的文章
[Gong, Dihong]的文章
[Li, Qiang]的文章
必应学术
必应学术中相似的文章
[Li, Zhifeng]的文章
[Gong, Dihong]的文章
[Li, Qiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。