OPT OpenIR  > 动态光学成像研究室
A nonlinear anisotropic GVF-shock diffusion method to multi-frame image super-resolution reconstruction
Zhao, Xiaodong; Cao, Jianzhong; Zhou, Zuofeng; Leng, Hanbing; Guo, Huinan
2015-05-20
发表期刊Journal of Information and Computational Science
卷号12期号:8页码:3155-3164
摘要This paper presents a new nonlinear anisotropic Gradient Vector Flow (GVF) shock diffusion method to multi-frame image Super-resolution (SR) reconstruction. Firstly, matrix-valued diffusion tensor is constructed based on anisotropic nonlinear structure tensor, making full use of its directional smooth characteristics. Then, an anisotropic GVF is proposed to diffuse along tangent and normal directions separately, combing with adaptively weighted shock filter to enhance edge sharpness. Experimental results show that proposed algorithm enhances image edges and suppresses noise effectively. Copyright © 2015 Binary Information Press.
收录类别EI
语种英语
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/27348
专题动态光学成像研究室
推荐引用方式
GB/T 7714
Zhao, Xiaodong,Cao, Jianzhong,Zhou, Zuofeng,et al. A nonlinear anisotropic GVF-shock diffusion method to multi-frame image super-resolution reconstruction[J]. Journal of Information and Computational Science,2015,12(8):3155-3164.
APA Zhao, Xiaodong,Cao, Jianzhong,Zhou, Zuofeng,Leng, Hanbing,&Guo, Huinan.(2015).A nonlinear anisotropic GVF-shock diffusion method to multi-frame image super-resolution reconstruction.Journal of Information and Computational Science,12(8),3155-3164.
MLA Zhao, Xiaodong,et al."A nonlinear anisotropic GVF-shock diffusion method to multi-frame image super-resolution reconstruction".Journal of Information and Computational Science 12.8(2015):3155-3164.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A nonlinear anisotro(1947KB)期刊论文作者接受稿开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Xiaodong]的文章
[Cao, Jianzhong]的文章
[Zhou, Zuofeng]的文章
百度学术
百度学术中相似的文章
[Zhao, Xiaodong]的文章
[Cao, Jianzhong]的文章
[Zhou, Zuofeng]的文章
必应学术
必应学术中相似的文章
[Zhao, Xiaodong]的文章
[Cao, Jianzhong]的文章
[Zhou, Zuofeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。