OPT OpenIR  > 光谱成像技术研究室
Nonnegative Multiresolution Representation-Based Texture Image Classification
Dong, Yongsheng1,2; Tao, Dacheng1; Li, Xuelong1
2015-10-01
发表期刊ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY
卷号7期号:1
摘要Effective representation of image texture is important for an image-classification task. Statistical modelling in wavelet domains has been widely used to image texture representation. However, due to the intraclass complexity and interclass diversity of textures, it is hard to use a predefined probability distribution function to fit adaptively all wavelet subband coefficients of different textures. In this article, we propose a novel modelling approach, Heterogeneous and Incrementally Generated Histogram (HIGH), to indirectly model the wavelet coefficients by use of four local features in wavelet subbands. By concatenating all the HIGHs in all wavelet subbands of a texture, we can construct a nonnegative multiresolution vector (NMV) to represent a texture image. Considering the NMV's high dimensionality and nonnegativity, we further propose a Hessian regularized discriminative nonnegative matrix factorization to compute a low-dimensional basis of the linear subspace of NMVs. Finally, we present a texture classification approach by projecting NMVs on the low-dimensional basis. Experimental results show that our proposed texture classification method outperforms seven representative approaches.
文章类型Article
关键词Theory Experimentation Nonnegative Matrix Factorization Texture Classification Histogram Manifold Regularization Hessian Regularization
WOS标题词Science & Technology ; Technology
DOI10.1145/2738050
收录类别SCI ; EI
关键词[WOS]GENERALIZED GAUSSIAN DENSITY ; LOCAL BINARY PATTERNS ; MATRIX FACTORIZATION ; FEATURE-EXTRACTION ; MODEL ; RECOGNITION ; RETRIEVAL ; FEATURES ; TRANSFORM ; SUBSPACE
语种英语
WOS研究方向Computer Science
项目资助者National Natural Science Foundation of China(61125106 ; China Post-Doctoral Science Foundation(2014M550517 ; Key Research Program of the Chinese Academy of Sciences(KGZD-EW-T03) ; Program for Innovative Research Team (in Science and Technology) in University of Henan Province(14IRTSTHN021) ; Key Science and Technology Research Project of Henan Provinces Education Department of China(13B520992) ; 61301230) ; 2015T81063)
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号WOS:000363900100004
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/25540
专题光谱成像技术研究室
作者单位1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China
2.Henan Univ Sci & Technol, Informat Engn Coll, Luoyang 471023, Henan, Peoples R China
推荐引用方式
GB/T 7714
Dong, Yongsheng,Tao, Dacheng,Li, Xuelong. Nonnegative Multiresolution Representation-Based Texture Image Classification[J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,2015,7(1).
APA Dong, Yongsheng,Tao, Dacheng,&Li, Xuelong.(2015).Nonnegative Multiresolution Representation-Based Texture Image Classification.ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY,7(1).
MLA Dong, Yongsheng,et al."Nonnegative Multiresolution Representation-Based Texture Image Classification".ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 7.1(2015).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Nonnegative Multires(1711KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Dong, Yongsheng]的文章
[Tao, Dacheng]的文章
[Li, Xuelong]的文章
百度学术
百度学术中相似的文章
[Dong, Yongsheng]的文章
[Tao, Dacheng]的文章
[Li, Xuelong]的文章
必应学术
必应学术中相似的文章
[Dong, Yongsheng]的文章
[Tao, Dacheng]的文章
[Li, Xuelong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。