OPT OpenIR  > 光谱成像技术研究室
Image Super-Resolution via Double Sparsity Regularized Manifold Learning
Lu, Xiaoqiang; Yuan, Yuan; Yan, Pingkun
2013-12-01
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY
卷号23期号:12页码:2022-2033
摘要Over the past few years, high resolutions have been desirable or essential, e. g., in online video systems, and therefore, much has been done to achieve an image of higher resolution from the corresponding low-resolution ones. This procedure of recovering/rebuilding is called single-image super-resolution (SR). Performance of image SR has been significantly improved via methods of sparse coding. That is to say, the image frame patch can be sparse linear combinations of basis elements. However, most of these existing methods fail to consider the local geometrical structure in the space of the training data. To take this crucial issue into account, this paper proposes a method named double sparsity regularized manifold learning (DSRML). DSRML can preserve the properties of the aforementioned local geometrical structure by employing manifold learning, e. g., locally linear embedding. Based on a large amount of experimental results, DSRML is demonstrated to be more robust and more effective than previous efforts in the task of single-image SR.
文章类型Article
关键词Double Sparsity Manifold Learning Single-image Super-resolution (Sr) Sparse Coding
WOS标题词Science & Technology ; Technology
DOI10.1109/TCSVT.2013.2244798
收录类别SCI ; EI
关键词[WOS]NONLINEAR DIMENSIONALITY REDUCTION ; QUALITY ASSESSMENT ; ALGORITHM ; REPRESENTATIONS ; RECONSTRUCTION ; INTERPOLATION ; DICTIONARIES ; INFORMATION ; REGRESSION ; ROBUST
语种英语
WOS研究方向Engineering
WOS类目Engineering, Electrical & Electronic
WOS记录号WOS:000328047000002
引用统计
被引频次:80[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/23467
专题光谱成像技术研究室
作者单位Chinese Acad Sci, Ctr Opt Imagery Anal & Learning, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China
推荐引用方式
GB/T 7714
Lu, Xiaoqiang,Yuan, Yuan,Yan, Pingkun. Image Super-Resolution via Double Sparsity Regularized Manifold Learning[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,2013,23(12):2022-2033.
APA Lu, Xiaoqiang,Yuan, Yuan,&Yan, Pingkun.(2013).Image Super-Resolution via Double Sparsity Regularized Manifold Learning.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,23(12),2022-2033.
MLA Lu, Xiaoqiang,et al."Image Super-Resolution via Double Sparsity Regularized Manifold Learning".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 23.12(2013):2022-2033.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Image Super-Resoluti(1039KB)期刊论文出版稿限制开放CC BY请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, Xiaoqiang]的文章
[Yuan, Yuan]的文章
[Yan, Pingkun]的文章
百度学术
百度学术中相似的文章
[Lu, Xiaoqiang]的文章
[Yuan, Yuan]的文章
[Yan, Pingkun]的文章
必应学术
必应学术中相似的文章
[Lu, Xiaoqiang]的文章
[Yuan, Yuan]的文章
[Yan, Pingkun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。