OPT OpenIR  > 光学影像学习与分析中心
Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization
Hu, Yao1; Zhang, Debing1; Ye, Jieping2,3; Li, Xuelong4; He, Xiaofei1
2013-09-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
卷号35期号:9页码:2117-2130
摘要Recovering a large matrix from a small subset of its entries is a challenging problem arising in many real applications, such as image inpainting and recommender systems. Many existing approaches formulate this problem as a general low-rank matrix approximation problem. Since the rank operator is nonconvex and discontinuous, most of the recent theoretical studies use the nuclear norm as a convex relaxation. One major limitation of the existing approaches based on nuclear norm minimization is that all the singular values are simultaneously minimized, and thus the rank may not be well approximated in practice. In this paper, we propose to achieve a better approximation to the rank of matrix by truncated nuclear norm, which is given by the nuclear norm subtracted by the sum of the largest few singular values. In addition, we develop a novel matrix completion algorithm by minimizing the Truncated Nuclear Norm. We further develop three efficient iterative procedures, TNNR-ADMM, TNNR-APGL, and TNNR-ADMMAP, to solve the optimization problem. TNNR-ADMM utilizes the alternating direction method of multipliers (ADMM), while TNNR-AGPL applies the accelerated proximal gradient line search method (APGL) for the final optimization. For TNNR-ADMMAP, we make use of an adaptive penalty according to a novel update rule for ADMM to achieve a faster convergence rate. Our empirical study shows encouraging results of the proposed algorithms in comparison to the state-of-the-art matrix completion algorithms on both synthetic and real visual datasets.
文章类型Article
关键词Matrix Completion Nuclear Norm Minimization Alternating Direction Method Of Multipliers Accelerated Proximal Gradient Method
WOS标题词Science & Technology ; Technology
DOI10.1109/TPAMI.2012.271
收录类别SCI ; EI
关键词[WOS]ALTERNATING DIRECTION METHOD ; LOW-RANK ; THRESHOLDING ALGORITHM ; MINIMIZATION ; ENTRIES
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000322029000006
引用统计
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/23452
专题光学影像学习与分析中心
作者单位1.Zhejiang Univ, Coll Comp Sci, State Key Lab CAD&CG, Hangzhou 310058, Zhejiang, Peoples R China
2.Arizona State Univ, Dept Comp Sci & Engn, Tempe, AZ 85287 USA
3.Arizona State Univ, Ctr Evolutionary Med & Informat, Biodesign Inst, Tempe, AZ 85287 USA
4.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transicent Opt & Photon, Ctr Opt IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Hu, Yao,Zhang, Debing,Ye, Jieping,et al. Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2013,35(9):2117-2130.
APA Hu, Yao,Zhang, Debing,Ye, Jieping,Li, Xuelong,&He, Xiaofei.(2013).Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,35(9),2117-2130.
MLA Hu, Yao,et al."Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 35.9(2013):2117-2130.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Fast and Accurate Ma(1907KB)期刊论文出版稿开放获取CC BY浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hu, Yao]的文章
[Zhang, Debing]的文章
[Ye, Jieping]的文章
百度学术
百度学术中相似的文章
[Hu, Yao]的文章
[Zhang, Debing]的文章
[Ye, Jieping]的文章
必应学术
必应学术中相似的文章
[Hu, Yao]的文章
[Zhang, Debing]的文章
[Ye, Jieping]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。