OPT OpenIR  > 光谱成像技术研究室
Transductive Face Sketch-Photo Synthesis
Wang, Nannan1; Tao, Dacheng2,3; Gao, Xinbo1; Li, Xuelong4; Li, Jie1
2013-09-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
卷号24期号:9页码:1364-1376
摘要Face sketch-photo synthesis plays a critical role in many applications, such as law enforcement and digital entertainment. Recently, many face sketch-photo synthesis methods have been proposed under the framework of inductive learning, and these have obtained promising performance. However, these inductive learning-based face sketch-photo synthesis methods may result in high losses for test samples, because inductive learning minimizes the empirical loss for training samples. This paper presents a novel transductive face sketch-photo synthesis method that incorporates the given test samples into the learning process and optimizes the performance on these test samples. In particular, it defines a probabilistic model to optimize both the reconstruction fidelity of the input photo (sketch) and the synthesis fidelity of the target output sketch (photo), and efficiently optimizes this probabilistic model by alternating optimization. The proposed transductive method significantly reduces the expected high loss and improves the synthesis performance for test samples. Experimental results on the Chinese University of Hong Kong face sketch data set demonstrate the effectiveness of the proposed method by comparing it with representative inductive learning-based face sketch-photo synthesis methods.
文章类型Article
关键词Probabilistic Graph Model Quadratic Programming Sketch-photo Synthesis Transductive Learning
WOS标题词Science & Technology ; Technology
收录类别SCI ; EI
关键词[WOS]SPARSE REPRESENTATION ; RECOGNITION ; IMAGE ; RECONSTRUCTION ; TRANSFORMATION ; INFORMATION ; ENSEMBLE
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000325980900002
引用统计
被引频次:139[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/23197
专题光谱成像技术研究室
作者单位1.Xidian Univ, Sch Elect Engn, VIPS Lab, Xian 710071, Peoples R China
2.Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Ultimo, NSW 2007, Australia
3.Univ Technol Sydney, Fac Engn & Informat Technol, Ultimo, NSW 2007, Australia
4.Chinese Acad Sci, Ctr OPT IMagery Anal & Learning, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
推荐引用方式
GB/T 7714
Wang, Nannan,Tao, Dacheng,Gao, Xinbo,et al. Transductive Face Sketch-Photo Synthesis[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2013,24(9):1364-1376.
APA Wang, Nannan,Tao, Dacheng,Gao, Xinbo,Li, Xuelong,&Li, Jie.(2013).Transductive Face Sketch-Photo Synthesis.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,24(9),1364-1376.
MLA Wang, Nannan,et al."Transductive Face Sketch-Photo Synthesis".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 24.9(2013):1364-1376.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Transductive Face Sk(2307KB)期刊论文出版稿限制开放CC BY请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Nannan]的文章
[Tao, Dacheng]的文章
[Gao, Xinbo]的文章
百度学术
百度学术中相似的文章
[Wang, Nannan]的文章
[Tao, Dacheng]的文章
[Gao, Xinbo]的文章
必应学术
必应学术中相似的文章
[Wang, Nannan]的文章
[Tao, Dacheng]的文章
[Gao, Xinbo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。