Learning Saliency by MRF and Differential Threshold | |
Zhu, Guokang; Wang, Qi; Yuan, Yuan![]() | |
作者部门 | 光学影像学习与分析中心 |
2013-12-01 | |
发表期刊 | IEEE TRANSACTIONS ON CYBERNETICS
![]() |
ISSN | 2168-2267 |
卷号 | 43期号:6页码:2032-2043 |
产权排序 | 1 |
摘要 | Saliency detection has been an attractive topic in recent years. The reliable detection of saliency can help a lot of useful processing without prior knowledge about the scene, such as content-aware image compression, segmentation, etc. Although many efforts have been spent in this subject, the feature expression and model construction are far from perfect. The obtained saliency maps are therefore not satisfying enough. In order to overcome these challenges, this paper presents a new psychologic visual feature based on differential threshold and applies it in a supervised Markov-random-field framework. Experiments on two public data sets and an image retargeting application demonstrate the effectiveness, robustness, and practicability of the proposed method. |
文章类型 | Article |
关键词 | Computer Vision Differential Threshold Machine Learning Markov Random Field (Mrf) Saliency Detection Visual Attention |
WOS标题词 | Science & Technology ; Technology |
DOI | 10.1109/TSMCB.2013.2238927 |
收录类别 | SCI ; EI |
关键词[WOS] | SELECTIVE VISUAL-ATTENTION ; OBJECT RECOGNITION ; REGION DETECTION ; CLUTTERED SCENES ; IMAGE ; COLOR ; SEGMENTATION ; MODEL ; CONTRAST ; CONTEXT |
语种 | 英语 |
WOS研究方向 | Computer Science |
项目资助者 | National Basic Research Program of China (973 Program)(2011CB707104) ; National Natural Science Foundation of China(61172142 ; Natural Science Foundation Research Project of Shaanxi Province(2012JM8024) ; 50th China Postdoctoral Science Foundation(2011M501487) ; 61172143 ; 61105012 ; 61125106 ; 91120302) |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Cybernetics |
WOS记录号 | WOS:000327647500042 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/23182 |
专题 | 光谱成像技术研究室 |
作者单位 | Chinese Acad Sci, Xian Inst Optic & Precis Mech, State Key Lab Transient Optic & Photon, OPTIMAL, Xian 710119, u, Peoples R China |
推荐引用方式 GB/T 7714 | Zhu, Guokang,Wang, Qi,Yuan, Yuan,et al. Learning Saliency by MRF and Differential Threshold[J]. IEEE TRANSACTIONS ON CYBERNETICS,2013,43(6):2032-2043. |
APA | Zhu, Guokang,Wang, Qi,Yuan, Yuan,&Yan, Pingkun.(2013).Learning Saliency by MRF and Differential Threshold.IEEE TRANSACTIONS ON CYBERNETICS,43(6),2032-2043. |
MLA | Zhu, Guokang,et al."Learning Saliency by MRF and Differential Threshold".IEEE TRANSACTIONS ON CYBERNETICS 43.6(2013):2032-2043. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Learning Saliency by(1929KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论