Shrink image by feature matrix decomposition | |
Wang, Qi1; Li, Xuelong2![]() | |
作者部门 | 光学影像学习与分析中心 |
2014-09-22 | |
发表期刊 | NEUROCOMPUTING
![]() |
ISSN | 0925-2312 |
卷号 | 140页码:162-171 |
摘要 | With the development of multimedia technology, image resizing has been raised as a question when the aspect ratio of an examined image should be displayed on a device with a different aspect ratio. Traditional nonuniform scaling for tackling this problem will lead to distortion. Therefore, content-aware consideration is mostly incorporated in the designing procedure. Such methods generally defines an energy function indicating the importance level of image content. The more important regions would be retained in the resizing procedure and distortion could be avoided consequently. The definition of the related energy function is thus the critical factor that directly influences the resizing results. In this work, we explore the definition of energy function from another aspect, matrix decomposition of Low-rank Representation. In our processing, a feature matrix that reflects the texture prior of object contour is firstly constructed. Then the matrix is decomposed into a low-rank one and sparse one. The energy function for resizing is then inferred from the sparse one. We illustrate the proposed method through seam carving framework and image shrinkage operation. Experiments on a dataset containing 1000 images demonstrate the effectiveness and robustness of the proposed method. (C) 2014 Elsevier B.V. All rights reserved. |
文章类型 | Article |
关键词 | Computer Vision Machine Learning Image Resizing Seam Carving Low-rank Representation Sparse Coding |
WOS标题词 | Science & Technology ; Technology |
DOI | 10.1016/j.neucom.2014.03.025 |
收录类别 | SCI ; EI |
关键词[WOS] | SALIENT REGION DETECTION ; SEGMENTATION ; CONTRAST |
语种 | 英语 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000337775400017 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/22397 |
专题 | 光谱成像技术研究室 |
作者单位 | 1.Northwestern Polytech Univ, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710072, Shaanxi, Peoples R China 2.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Qi,Li, Xuelong. Shrink image by feature matrix decomposition[J]. NEUROCOMPUTING,2014,140:162-171. |
APA | Wang, Qi,&Li, Xuelong.(2014).Shrink image by feature matrix decomposition.NEUROCOMPUTING,140,162-171. |
MLA | Wang, Qi,et al."Shrink image by feature matrix decomposition".NEUROCOMPUTING 140(2014):162-171. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Shrink image by feat(2784KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY | 请求全文 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wang, Qi]的文章 |
[Li, Xuelong]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wang, Qi]的文章 |
[Li, Xuelong]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wang, Qi]的文章 |
[Li, Xuelong]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论