OPT OpenIR  > 光谱成像技术研究室
Automatic segmentation of breast lesions for interaction in ultrasonic computer-aided diagnosis
Huang, Qinghua1; Yang, Feibin1; Liu, Longzhong2; Li, Xuelong3
作者部门光学影像学习与分析中心
2015-09-01
发表期刊INFORMATION SCIENCES
ISSN0020-0255
卷号314页码:293-310
摘要Breast cancer is one of the most commonly diagnosed cancer types among women. Sonography has been regarded as an important imaging modality for diagnosis of breast lesions. Due to the speckle and the variance in shape and appearance of sonographic lesions, fully automatic segmentation of the breast tumor regions still remains a challenging task. In this paper, we propose an automatic interaction scheme based on an object recognition method to segment the lesions in breast ultrasound images. In this scheme, a 2D ultrasound image is firstly filtered with a total-variation model to reduce the speckle noise. A robust graphbased segmentation method is then used to segment the image into a number of subregions. An object recognition method incorporating the procedures of image feature extraction, feature selection and classification is proposed to automatically identify the regions which are associated with breast tumors. Finally, an active contour model is used to refine the contours of the regions that are recognized as tumors. This scheme is validated on a database of 46 breast ultrasound images with diagnosed tumors. The experimental results show that our scheme can segment the breast ultrasound images automatically, indicating its good performance in real applitations. (C) 2014 Elsevier Inc. All rights reserved.
文章类型Article
关键词Automatic Interaction Image Segmentation Object Recognition Ultrasound
WOS标题词Science & Technology ; Technology
DOI10.1016/j.ins.2014.08.021
收录类别SCI ; EI
关键词[WOS]GRAPH-BASED SEGMENTATION ; ACTIVE CONTOUR MODEL ; IMAGE SEGMENTATION ; LEVEL SET ; CLASSIFICATION ; CANCER ; FEATURES ; STATISTICS ; ALGORITHMS ; NODULES
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems
WOS记录号WOS:000355050200019
引用统计
被引频次:79[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/22389
专题光谱成像技术研究室
作者单位1.S China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510641, Guangdong, Peoples R China
2.Sun Yat Sen Univ, Ctr Canc, Guangzhou, Guangdong, Peoples R China
3.Chinese Acad Sci, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Huang, Qinghua,Yang, Feibin,Liu, Longzhong,et al. Automatic segmentation of breast lesions for interaction in ultrasonic computer-aided diagnosis[J]. INFORMATION SCIENCES,2015,314:293-310.
APA Huang, Qinghua,Yang, Feibin,Liu, Longzhong,&Li, Xuelong.(2015).Automatic segmentation of breast lesions for interaction in ultrasonic computer-aided diagnosis.INFORMATION SCIENCES,314,293-310.
MLA Huang, Qinghua,et al."Automatic segmentation of breast lesions for interaction in ultrasonic computer-aided diagnosis".INFORMATION SCIENCES 314(2015):293-310.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Automatic segmentati(3161KB)期刊论文出版稿限制开放CC BY请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, Qinghua]的文章
[Yang, Feibin]的文章
[Liu, Longzhong]的文章
百度学术
百度学术中相似的文章
[Huang, Qinghua]的文章
[Yang, Feibin]的文章
[Liu, Longzhong]的文章
必应学术
必应学术中相似的文章
[Huang, Qinghua]的文章
[Yang, Feibin]的文章
[Liu, Longzhong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。