GA-SIFT: A new scale invariant feature transform for multispectral image using geometric algebra | |
Li, Yanshan1; Liu, Weiming2; Li, Xiaotang3; Huang, Qinghua4; Li, Xuelong5![]() | |
作者部门 | 光学影像学习与分析中心 |
2014-10-10 | |
发表期刊 | INFORMATION SCIENCES
![]() |
ISSN | 0020-0255 |
卷号 | 281期号:0页码:559-572 |
摘要 | Feature analysis plays an important role in many multispectral image applications and scale invariant feature transform (SIFT) has been successfully applied for extraction of image features. However, the existing SIFT algorithms cannot extract features from multispectral images directly. This paper puts forward a novel algorithmic framework based on the SIFT for multispectral images. Firstly, with the theory of the geometric algebra (GA), a new representation of multispectral image including spatial and spectral information is put forward and discussed. Secondly, a new method for obtaining the scale space of the multispectral image is proposed. Thirdly, following the procedures of the SIFT, the GA based difference of Gaussian images are computed and the keypoints can be detected in the GA space. Fourthly, the feature points are finally detected and described in the mathematical framework of the GA. Finally, the comparison results show that the GA-SIFT outperforms some previously reported SIFT algorithms in the feature extraction from a multispectral image, and it is comparable with its counterparts in the feature extraction of color images, indicating good performance in various applications of image analysis. (C) 2013 Elsevier Inc. All rights reserved. |
文章类型 | Article |
关键词 | Sift Feature Extraction Multispectral Image Geometric Algebra |
WOS标题词 | Science & Technology ; Technology |
DOI | 10.1016/j.ins.2013.12.022 |
收录类别 | SCI ; EI |
关键词[WOS] | DISCRIMINANT-ANALYSIS ; FEATURE-EXTRACTION ; CLIFFORD ALGEBRAS ; CLASSIFICATION ; DESCRIPTORS ; RECOGNITION ; PCA |
语种 | 英语 |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Information Systems |
WOS记录号 | WOS:000340315600038 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.opt.ac.cn/handle/181661/22387 |
专题 | 光谱成像技术研究室 |
作者单位 | 1.Shenzhen Univ, Shenzhen 518060, Peoples R China 2.S China Univ Technol, Sch Civil Engn & Transportat, Guangzhou 510640, Guangdong, Peoples R China 3.Harbin Univ Commerce, Harbin, Peoples R China 4.S China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510640, Guangdong, Peoples R China 5.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Yanshan,Liu, Weiming,Li, Xiaotang,et al. GA-SIFT: A new scale invariant feature transform for multispectral image using geometric algebra[J]. INFORMATION SCIENCES,2014,281(0):559-572. |
APA | Li, Yanshan,Liu, Weiming,Li, Xiaotang,Huang, Qinghua,&Li, Xuelong.(2014).GA-SIFT: A new scale invariant feature transform for multispectral image using geometric algebra.INFORMATION SCIENCES,281(0),559-572. |
MLA | Li, Yanshan,et al."GA-SIFT: A new scale invariant feature transform for multispectral image using geometric algebra".INFORMATION SCIENCES 281.0(2014):559-572. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
GA-SIFT A new scale (2864KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY | 请求全文 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论