OPT OpenIR  > 光谱成像技术研究室
A Unified Learning Framework for Single Image Super-Resolution
Yu, Jifei1; Gao, Xinbo1; Tao, Dacheng2,3; Li, Xuelong4; Zhang, Kaibing5
作者部门光学影像学习与分析中心
2014-04-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
卷号25期号:4页码:780-792
摘要It has been widely acknowledged that learning- and reconstruction-based super-resolution (SR) methods are effective to generate a high-resolution (HR) image from a single low-resolution (LR) input. However, learning-based methods are prone to introduce unexpected details into resultant HR images. Although reconstruction-based methods do not generate obvious artifacts, they tend to blur fine details and end up with unnatural results. In this paper, we propose a new SR framework that seamlessly integrates learning-and reconstruction-based methods for single image SR to: 1) avoid unexpected artifacts introduced by learning-based SR and 2) restore the missing high-frequency details smoothed by reconstruction-based SR. This integrated framework learns a single dictionary from the LR input instead of from external images to hallucinate details, embeds nonlocal means filter in the reconstruction-based SR to enhance edges and suppress artifacts, and gradually magnifies the LR input to the desired high-quality SR result. We demonstrate both visually and quantitatively that the proposed framework produces better results than previous methods from the literature.
文章类型Article
关键词Example Learning-based Image Super-resolution (Sr) Reconstruction-based Self-similarity
WOS标题词Science & Technology ; Technology
DOI10.1109/TNNLS.2013.2281313
收录类别SCI ; EI
关键词[WOS]SUPPORT VECTOR REGRESSION ; HIGH-RESOLUTION IMAGE ; QUALITY ASSESSMENT ; INTERPOLATION ; ALGORITHMS ; RECOVERY ; LIMITS
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000333098700011
引用统计
被引频次:77[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/22383
专题光谱成像技术研究室
作者单位1.Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
2.Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Ultimo, NSW 2007, Australia
3.Univ Technol Sydney, Fac Engn & Informat Technol, Ultimo, NSW 2007, Australia
4.Chinese Acad Sci, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
5.Hubei Engn Univ, Sch Comp & Informat Sci, Xiaogan 432000, Peoples R China
推荐引用方式
GB/T 7714
Yu, Jifei,Gao, Xinbo,Tao, Dacheng,et al. A Unified Learning Framework for Single Image Super-Resolution[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2014,25(4):780-792.
APA Yu, Jifei,Gao, Xinbo,Tao, Dacheng,Li, Xuelong,&Zhang, Kaibing.(2014).A Unified Learning Framework for Single Image Super-Resolution.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,25(4),780-792.
MLA Yu, Jifei,et al."A Unified Learning Framework for Single Image Super-Resolution".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 25.4(2014):780-792.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
A Unified Learning F(3831KB)期刊论文出版稿限制开放CC BY请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Jifei]的文章
[Gao, Xinbo]的文章
[Tao, Dacheng]的文章
百度学术
百度学术中相似的文章
[Yu, Jifei]的文章
[Gao, Xinbo]的文章
[Tao, Dacheng]的文章
必应学术
必应学术中相似的文章
[Yu, Jifei]的文章
[Gao, Xinbo]的文章
[Tao, Dacheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。