OPT OpenIR  > 光谱成像技术研究室
From Heuristic Optimization to Dictionary Learning: A Review and Comprehensive Comparison of Image Denoising Algorithms
Shao, Ling1,2; Yan, Ruomei2; Li, Xuelong3; Liu, Yan4
作者部门光学影像学习与分析中心
2014-07-01
发表期刊IEEE TRANSACTIONS ON CYBERNETICS
ISSN2168-2267
卷号44期号:7页码:1001-1013
摘要Image denoising is a well explored topic in the field of image processing. In the past several decades, the progress made in image denoising has benefited from the improved modeling of natural images. In this paper, we introduce a new taxonomy based on image representations for a better understanding of state-of-the-art image denoising techniques. Within each category, several representative algorithms are selected for evaluation and comparison. The experimental results are discussed and analyzed to determine the overall advantages and disadvantages of each category. In general, the nonlocal methods within each category produce better denoising results than local ones. In addition, methods based on overcomplete representations using learned dictionaries perform better than others. The comprehensive study in this paper would serve as a good reference and stimulate new research ideas in image denoising.
文章类型Article
关键词Adaptive Filters Dictionary Learning Evaluation Image Denoising Sparse Coding Spatial Domain Survey Transform Domain
WOS标题词Science & Technology ; Technology
DOI10.1109/TCYB.2013.2278548
收录类别SCI ; EI
关键词[WOS]NONLOCAL MEANS ; SPARSE REPRESENTATION ; QUALITY ASSESSMENT ; WAVELET-DOMAIN ; TRANSFORM ; FILTER ; CLASSIFICATION ; APPROXIMATION ; RESTORATION ; EDGES
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000342225800002
引用统计
被引频次:283[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/22363
专题光谱成像技术研究室
作者单位1.Nanjing Univ Informat Sci & Technol, Coll Elect & Informat Engn, Nanjing 210044, Jiangsu, Peoples R China
2.Univ Sheffield, Dept Elect & Elect Engn, Sheffield S1 3JD, S Yorkshire, England
3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr OPT Imagery Anal & Learning, Xian 710119, Peoples R China
4.Hong Kong Polytech Univ, Dept Comp, Kowloon, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Shao, Ling,Yan, Ruomei,Li, Xuelong,et al. From Heuristic Optimization to Dictionary Learning: A Review and Comprehensive Comparison of Image Denoising Algorithms[J]. IEEE TRANSACTIONS ON CYBERNETICS,2014,44(7):1001-1013.
APA Shao, Ling,Yan, Ruomei,Li, Xuelong,&Liu, Yan.(2014).From Heuristic Optimization to Dictionary Learning: A Review and Comprehensive Comparison of Image Denoising Algorithms.IEEE TRANSACTIONS ON CYBERNETICS,44(7),1001-1013.
MLA Shao, Ling,et al."From Heuristic Optimization to Dictionary Learning: A Review and Comprehensive Comparison of Image Denoising Algorithms".IEEE TRANSACTIONS ON CYBERNETICS 44.7(2014):1001-1013.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
From Heuristic Optim(12238KB)期刊论文出版稿限制开放CC BY请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shao, Ling]的文章
[Yan, Ruomei]的文章
[Li, Xuelong]的文章
百度学术
百度学术中相似的文章
[Shao, Ling]的文章
[Yan, Ruomei]的文章
[Li, Xuelong]的文章
必应学术
必应学术中相似的文章
[Shao, Ling]的文章
[Yan, Ruomei]的文章
[Li, Xuelong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。