OPT OpenIR  > 空间光学技术研究室
Improved bidirectional image registration based on Radon-SIFT
Bu, Fan; Qiu, Yuehong; Liu, Jinxia; Yan, Xingtao
作者部门空间光学技术研究室
2012
发表期刊Journal of Computational Information Systems
ISSN15539105
卷号8期号:12页码:4997-5004
产权排序1
摘要Aiming at the problems of large calculation, high complexity and long time-consuming in Scale Invariant Feature Transform (SIFT) feature matching algorithm, this paper proposes a novel bidirectional Radon-SIFT matching algorithm. Based on Radon transform, we make 36 beelines on different directions in local keypoints region. Along these 36 directions, we calculate Radon transform integral values which can be chosen as keypoints vector descriptors. 36-dimensional Radon-SIFT descriptors outweigh the standard 128-dimensional ones both in accuracy and efficiency. The other contribution of this paper is bidirectional matching algorithm. This improved algorithm introduces matching uniqueness constraint to further reduce matching error. To demonstrate the effectiveness and robustness of the proposed algorithm, we apply it to natural images. Experimental results show greater accuracy and faster matching.
收录类别EI
语种英语
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/20267
专题空间光学技术研究室
推荐引用方式
GB/T 7714
Bu, Fan,Qiu, Yuehong,Liu, Jinxia,et al. Improved bidirectional image registration based on Radon-SIFT[J]. Journal of Computational Information Systems,2012,8(12):4997-5004.
APA Bu, Fan,Qiu, Yuehong,Liu, Jinxia,&Yan, Xingtao.(2012).Improved bidirectional image registration based on Radon-SIFT.Journal of Computational Information Systems,8(12),4997-5004.
MLA Bu, Fan,et al."Improved bidirectional image registration based on Radon-SIFT".Journal of Computational Information Systems 8.12(2012):4997-5004.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Improved bidirection(870KB) 限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bu, Fan]的文章
[Qiu, Yuehong]的文章
[Liu, Jinxia]的文章
百度学术
百度学术中相似的文章
[Bu, Fan]的文章
[Qiu, Yuehong]的文章
[Liu, Jinxia]的文章
必应学术
必应学术中相似的文章
[Bu, Fan]的文章
[Qiu, Yuehong]的文章
[Liu, Jinxia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。