OPT OpenIR  > 光谱成像技术研究室
Exploiting Local Coherent Patterns for Unsupervised Feature Ranking
Huang, Qinghua1; Tao, Dacheng2; Li, Xuelong3; Jin, Lianwen1; Wei, Gang1
作者部门光学影像分析与学习中心
2011-12-01
发表期刊IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS
ISSN1083-4419
卷号41期号:6页码:1471-1482
产权排序3
摘要Prior to pattern recognition, feature selection is often used to identify relevant features and discard irrelevant ones for obtaining improved analysis results. In this paper, we aim to develop an unsupervised feature ranking algorithm that evaluates features using discovered local coherent patterns, which are known as biclusters. The biclusters (viewed as submatrices) are discovered from a data matrix. These submatrices are used for scoring relevant features from two aspects, i.e., the interdependence of features and the separability of instances. The features are thereby ranked with respect to their accumulated scores from the total discovered biclusters before the pattern classification. Experimental results show that this proposed method can yield comparable or even better performance in comparison with the well-known Fisher score, Laplacian score, and variance score using three UCI data sets, well improve the results of gene expression data analysis using gene ontology annotation, and finally demonstrate its advantage of unsupervised feature ranking for high-dimensional data.
文章类型Article
关键词Bicluster Score Feature Selection Unsupervised Learning
学科领域Automation & Control Systems
WOS标题词Science & Technology ; Technology
DOI10.1109/TSMCB.2011.2151256
收录类别SCI ; EI
关键词[WOS]FEATURE SUBSET-SELECTION ; CLASSIFICATION ; DISCRIMINANT ; ALGORITHMS
语种英语
WOS研究方向Automation & Control Systems ; Computer Science
项目资助者National Basic Research Program of China (973 Program);National Natural Science Funds of China;Specialized Research Funds for the Doctoral Program of Higher Education of China;Fundamental Research Funds for the Central Universities;South China University of Technology;State Key Laboratory of Industrial Control Technology of Zhejiang University
WOS类目Automation & Control Systems ; Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000297342100003
引用统计
被引频次:34[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/19866
专题光谱成像技术研究室
作者单位1.S China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510640, Guangdong, Peoples R China
2.Univ Technol, Ctr Quantum Computat & Intelligent Syst, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
3.Chinese Acad Sci, Ctr Opt Imagery Anal & Learning OPTIMAL, Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
推荐引用方式
GB/T 7714
Huang, Qinghua,Tao, Dacheng,Li, Xuelong,et al. Exploiting Local Coherent Patterns for Unsupervised Feature Ranking[J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS,2011,41(6):1471-1482.
APA Huang, Qinghua,Tao, Dacheng,Li, Xuelong,Jin, Lianwen,&Wei, Gang.(2011).Exploiting Local Coherent Patterns for Unsupervised Feature Ranking.IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS,41(6),1471-1482.
MLA Huang, Qinghua,et al."Exploiting Local Coherent Patterns for Unsupervised Feature Ranking".IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS 41.6(2011):1471-1482.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Exploiting Local Coh(1382KB)期刊论文出版稿限制开放CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Huang, Qinghua]的文章
[Tao, Dacheng]的文章
[Li, Xuelong]的文章
百度学术
百度学术中相似的文章
[Huang, Qinghua]的文章
[Tao, Dacheng]的文章
[Li, Xuelong]的文章
必应学术
必应学术中相似的文章
[Huang, Qinghua]的文章
[Tao, Dacheng]的文章
[Li, Xuelong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。