中国科学院西安光学精密机械研究所机构知识库
Advanced  
OPT OpenIR  > 光学影像学习与分析中心  > 期刊论文
题名:
TRAVELOGUE ENRICHING AND SCENIC SPOT OVERVIEW BASED ON TEXTUAL AND VISUAL TOPIC MODELS
作者: Pang, Yanwei2; Lu, Xin2; Yuan Yuan(袁媛)1; Li, Xuelong1
作者部门: 光学影像分析与学习中心
刊名: INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE
出版日期: 2011-05-01
卷号: 25, 期号:3, 页码:373-390
关键词: Image retrieval ; probabilistic model ; text mining ; travelogue ; user-generated content
学科分类: Computer Science ; Artificial Intelligence
DOI: 10.1142/S0218001411008671
文章类型: Article
英文摘要: We consider the problem of enriching the travelogue associated with a small number (even one) of images with more web images. Images associated with the travelogue always consist of the content and the style of textual information. Relying on this assumption, in this paper, we present a framework of travelogue enriching, exploiting both textual and visual information generated by different users. The framework aims to select the most relevant images from automatically collected candidate image set to enrich the given travelogue, and form a comprehensive overview of the scenic spot. To do these, we propose to build two-layer probabilistic models, i.e. a text-layer model and image-layer models, on offline collected travelogues and images. Each topic (e.g. Sea, Mountain, Historical Sites) in the text-layer model is followed by an image-layer model with sub-topics learnt (e.g. the topic of sea is with the sub-topic like beach, tree, sunrise and sunset). Based on the model, we develop strategies to enrich travelogues in the following steps: (1) remove noisy names of scenic spots from travelogues; (2) generate queries to automatically gather candidate image set; (3) select images to enrich the travelogue; and (4) choose images to portray the visual content of a scenic spot. Experimental results on Chinese travelogues demonstrate the potential of the proposed approach on tasks of travelogue enrichment and the corresponding scenic spot illustration.
WOS标题词: Science & Technology ; Technology
类目[WOS]: Computer Science, Artificial Intelligence
研究领域[WOS]: Computer Science
关键词[WOS]: IMAGE RETRIEVAL ; SUBSPACE
收录类别: SCI ; EI
语种: 英语
WOS记录号: WOS:000291002600003
ISSN号: 0218-0014
Citation statistics:
内容类型: 期刊论文
URI标识: http://ir.opt.ac.cn/handle/181661/10577
Appears in Collections:光学影像学习与分析中心_期刊论文

Files in This Item:
File Name/ File Size Content Type Version Access License
Travelogue Enriching and Scenic Spot Overview Based on Textual and Visual Topic Models.PDF(1506KB)期刊论文出版稿开放获取View 联系获取全文

作者单位: 1.Chinese Acad Sci, Ctr OPT IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mechan, Xian 710119, Shaanxi, Peoples R China
2.Tianjin Univ, Sch Elect Informat Engn, Tianjin 300072, Peoples R China

Recommended Citation:
Pang, Yanwei,Lu, Xin,Yuan, Yuan,et al. TRAVELOGUE ENRICHING AND SCENIC SPOT OVERVIEW BASED ON TEXTUAL AND VISUAL TOPIC MODELS[J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE,2011-05-01,25(3):373-390.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Pang, Yanwei]'s Articles
[Lu, Xin]'s Articles
[Yuan, Yuan]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Pang, Yanwei]‘s Articles
[Lu, Xin]‘s Articles
[Yuan, Yuan]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: Travelogue Enriching and Scenic Spot Overview Based on Textual and Visual Topic Models.PDF
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Powered by CSpace