OPT OpenIR  > 光谱成像技术研究室
Open-category classification of hyperspectral images based on convolutional neural networks
Huang, Tingting1,2; Wang, Shuang3; Zhang, Geng3; Wang, Xueji3; Liu, Song1,2
2019-10-22
Conference Name3rd International Conference on Computer Science and Application Engineering, CSAE 2019
Source PublicationProceedings of the 3rd International Conference on Computer Science and Application Engineering, CSAE 2019
Conference Date2019-10-22
Conference PlaceSanya, China
PublisherAssociation for Computing Machinery
Contribution Rank1
Abstract

The application of the hyperspectral image (HSI) classification has become increasingly important in industry, agriculture and military. In recent years, the accuracy of HIS classification has been greatly improved through deep learning based methods. However, most of the deep learning models tend to classify all the samples into categories that exist in the training data. In real-world classification tasks, it is difficult to obtain samples from all categories that exist in the whole hyperspectral image. In this paper, we design a framework based on convolutional neural networks and probability thresholds(CNPT) in order to deal with the open-category classification(OCC) problem. Instead of classifying samples of categories that do not exist in the training process to be any known class, the proposed method mark them as unseen category. We first get samples of unseen class from labeled data. With a lightweight convolutional network that fully uses the spectral-spatial information of HSI, we obtain the probabilities for each seen class for every sample. By adding a threshold to the maximum probabilities, we classify some samples to unseen category. A balanced score called Fue which considers both the recall rate of unseen class and the overall accuracy of seen classes is proposed in this paper, and we use it to select the threshold and evaluate the performance of CNPT. The experimental results show that our proposed algorithm performs well on hyperspectral data, and has generalizability on different datasets. © 2019 Association for Computing Machinery.

Keywordhyperspectral image open-category classification spectral-spatial information convolutional network
Department光谱成像技术研究室
DOI10.1145/3331453.3362049
Indexed ByEI
ISBN9781450362948
Language英语
ISSN17426588;17426596
EI Accession Number20194607684207
Citation statistics
Document Type会议论文
Identifierhttp://ir.opt.ac.cn/handle/181661/31920
Collection光谱成像技术研究室
Affiliation1.Xi'an Institute of Optics and Precision Mechanics of, CAS, Xi'an, China;
2.University of Chinese Academy of Sciences, Beijing, China;
3.Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an, China
Recommended Citation
GB/T 7714
Huang, Tingting,Wang, Shuang,Zhang, Geng,et al. Open-category classification of hyperspectral images based on convolutional neural networks[C]:Association for Computing Machinery,2019.
Files in This Item:
File Name/Size DocType Version Access License
Open-category classi(696KB)会议论文 限制开放CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Huang, Tingting]'s Articles
[Wang, Shuang]'s Articles
[Zhang, Geng]'s Articles
Baidu academic
Similar articles in Baidu academic
[Huang, Tingting]'s Articles
[Wang, Shuang]'s Articles
[Zhang, Geng]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Huang, Tingting]'s Articles
[Wang, Shuang]'s Articles
[Zhang, Geng]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.