OPT OpenIR  > 光谱成像技术实验室
Endmember extraction from hyperspectral imagery based on QR factorisation using givens rotations
Gan, Yuquan1,2; Hu, Bingliang1; Liu, Weihua1; Wang, Shuang1; Zhang, Geng1; Feng, Xiangpeng1; Wen, Desheng1
作者部门空间光学应用研究室
2019
发表期刊IET IMAGE PROCESSING
ISSN1751-9659;1751-9667
卷号13期号:2页码:332-343
产权排序1
摘要

Hyperspectral images are mixtures of spectra of materials in a scene. Accurate analysis of hyperspectral image requires spectral unmixing. The result of spectral unmixing is the material spectral signatures and their corresponding fractions. The materials are called endmembers. Endmember extraction equals to acquire spectral signatures of the materials. In this study, the authors propose a new hyperspectral endmember extraction algorithm for hyperspectral image based on QR factorisation using Givens rotations (EEGR). Evaluation of the algorithm is demonstrated by comparing its performance with two popular endmember extraction methods, which are vertex component analysis (VCA) and maximum volume by householder transformation (MVHT). Both simulated mixtures and real hyperspectral image are applied to the three algorithms, and the quantitative analysis of them is presented. EEGR exhibits better performance than VCA and MVHT. Moreover, EEGR algorithm is convenient to implement parallel computing for real-time applications based on the hardware features of Givens rotations.

关键词geophysical image processing feature extraction hyperspectral imaging spectral analysis hyperspectral imagery QR factorisation givens rotations spectral unmixing material spectral signatures hyperspectral endmember extraction algorithm popular endmember extraction methods EEGR vertex component analysis VCA maximum volume by householder transformation MVHT hardware features
DOI10.1049/iet-ipr.2018.5079
收录类别SCI
语种英语
WOS记录号WOS:000459477400013
出版者INST ENGINEERING TECHNOLOGY-IET
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/31168
专题光谱成像技术实验室
通讯作者Hu, Bingliang
作者单位1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Key Lab Spectral Imaging Technol, 17 Xinxi Rd, Xian, Shaanxi, Peoples R China
2.Univ Chinese Acad Sci, 19 Yuquan Rd, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Gan, Yuquan,Hu, Bingliang,Liu, Weihua,et al. Endmember extraction from hyperspectral imagery based on QR factorisation using givens rotations[J]. IET IMAGE PROCESSING,2019,13(2):332-343.
APA Gan, Yuquan.,Hu, Bingliang.,Liu, Weihua.,Wang, Shuang.,Zhang, Geng.,...&Wen, Desheng.(2019).Endmember extraction from hyperspectral imagery based on QR factorisation using givens rotations.IET IMAGE PROCESSING,13(2),332-343.
MLA Gan, Yuquan,et al."Endmember extraction from hyperspectral imagery based on QR factorisation using givens rotations".IET IMAGE PROCESSING 13.2(2019):332-343.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Endmember extraction(2947KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gan, Yuquan]的文章
[Hu, Bingliang]的文章
[Liu, Weihua]的文章
百度学术
百度学术中相似的文章
[Gan, Yuquan]的文章
[Hu, Bingliang]的文章
[Liu, Weihua]的文章
必应学术
必应学术中相似的文章
[Gan, Yuquan]的文章
[Hu, Bingliang]的文章
[Liu, Weihua]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Endmember extraction from hyperspectral imagery based on QR factorisation using givens rotations.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。