OPT OpenIR  > 光学影像学习与分析中心
GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change Detection
Wang, Qi1,2; Yuan, Zhenghang3,4; Du, Qian5; Li, Xuelong6,7
作者部门光学影像学习与分析中心
2019-01
发表期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN0196-2892;1558-0644
卷号57期号:1页码:3-13
产权排序6
摘要

Change detection (CD) is an important application of remote sensing, which provides timely change information about large-scale Earth surface. With the emergence of hyperspectral imagery, CD technology has been greatly promoted, as hyperspectral data with high spectral resolution are capable of detecting finer changes than using the traditional multispectral imagery. Nevertheless, the high dimension of the hyperspectral data makes it difficult to implement traditional CD algorithms. Besides, endmember abundance information at subpixel level is often not fully utilized. In order to better handle high-dimension problem and explore abundance information, this paper presents a general end-to-end 2-D convolutional neural network (CNN) framework for hyperspectral image CD (HSI-CD). The main contributions of this paper are threefold: 1) mixed-affinity matrix that integrates subpixel representation is introduced to mine more cross-channel gradient features and fuse multisource information; 2) 2-D CNN is designed to learn the discriminative features effectively from the multisource data at a higher level and enhance the generalization ability of the proposed CD algorithm; and 3) the new HSI-CD data set is designed for objective comparison of different methods. Experimental results on real hyperspectral data sets demonstrate that the proposed method outperforms most of the state of the arts.

关键词2-D convolutional neural network (CNN) change detection (CD) deep learning hyperspectral image (HSI) mixed-affinity matrix spectral unmixing
DOI10.1109/TGRS.2018.2849692
收录类别SCI
语种英语
WOS记录号WOS:000455089000001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/31164
专题光学影像学习与分析中心
通讯作者Wang, Qi
作者单位1.Northwestern Polytech Univ, Sch Comp Sci, Ctr OPT IMagery Anal & Learning, Xian 710072, Shaanxi, Peoples R China
2.Northwestern Polytech Univ, Unmanned Syst Res Inst, Xian 710072, Shaanxi, Peoples R China
3.Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
4.Northwestern Polytech Univ, Ctr OPT IMagery Anal & Learning, Xian 710072, Shaanxi, Peoples R China
5.Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
6.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China
7.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Wang, Qi,Yuan, Zhenghang,Du, Qian,et al. GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change Detection[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2019,57(1):3-13.
APA Wang, Qi,Yuan, Zhenghang,Du, Qian,&Li, Xuelong.(2019).GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change Detection.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,57(1),3-13.
MLA Wang, Qi,et al."GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change Detection".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 57.1(2019):3-13.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
GETNET A General End(3597KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Qi]的文章
[Yuan, Zhenghang]的文章
[Du, Qian]的文章
百度学术
百度学术中相似的文章
[Wang, Qi]的文章
[Yuan, Zhenghang]的文章
[Du, Qian]的文章
必应学术
必应学术中相似的文章
[Wang, Qi]的文章
[Yuan, Zhenghang]的文章
[Du, Qian]的文章
相关权益政策
暂无数据
收藏/分享
文件名: GETNET A General End-to-End 2-D CNN Framework for Hyperspectral Image Change Detection.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。