OPT OpenIR  > 光学影像学习与分析中心
Fast and Flexible Large Graph Embedding Based on Anchors
Yu, Weizhong1; Nie, Feiping2; Wang, Fei1; Wang, Rong2; Li, Xuelong3
作者部门光学影像学习与分析中心
2018-12
发表期刊IEEE Journal on Selected Topics in Signal Processing
ISSN19324553
卷号12期号:6页码:1465-1475
产权排序3
摘要Dimensionality reduction is one of the most fundamental topic in machine learning. A range of methods focus on dimensionality reduction have been proposed in various areas. Among the unsupervised dimensionality reduction methods, graph-based dimensionality reduction has begun to draw more and more attention due to its effectiveness. However, most existing graph-based methods have high computation complexity, which is not applicable to large-scale problems. To solve this problem, an unsupervised graph-based dimensionality reduction method called fast and flexible large graph embedding (FFLGE) based on anchors is proposed. FFLGE uses an anchor-based strategy to construct an anchor-based graph and design similarity matrix and then perform the dimensionality reduction efficiently. The computational complexity of the proposed FFLGE reduces to O(ndm), where n is the number of samples, d is the number of dimensions and m is the number of anchors. Furthermore, it is interesting to note that locality preserving projection and principal component analysis are two special cases of FFLGE. In the end, the experiments based on several publicly large-scale datasets proves the effectiveness and efficiency of the method proposed. ? 2018 IEEE.
DOI10.1109/JSTSP.2018.2873985
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20184105933128
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/31105
专题光学影像学习与分析中心
通讯作者Nie, Feiping
作者单位1.National Engineering Laboratory for Visual Information Processing and Applications, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an; 710049, China;
2.School of Computer Science, Center for Optical Imagery Analysis and Learning, Northwestern Polytechnical University, Xi'an; 710072, China;
3.Center for Optical Imagery Analysis and Learning, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an; 710119, China
推荐引用方式
GB/T 7714
Yu, Weizhong,Nie, Feiping,Wang, Fei,et al. Fast and Flexible Large Graph Embedding Based on Anchors[J]. IEEE Journal on Selected Topics in Signal Processing,2018,12(6):1465-1475.
APA Yu, Weizhong,Nie, Feiping,Wang, Fei,Wang, Rong,&Li, Xuelong.(2018).Fast and Flexible Large Graph Embedding Based on Anchors.IEEE Journal on Selected Topics in Signal Processing,12(6),1465-1475.
MLA Yu, Weizhong,et al."Fast and Flexible Large Graph Embedding Based on Anchors".IEEE Journal on Selected Topics in Signal Processing 12.6(2018):1465-1475.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Fast and Flexible La(1467KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yu, Weizhong]的文章
[Nie, Feiping]的文章
[Wang, Fei]的文章
百度学术
百度学术中相似的文章
[Yu, Weizhong]的文章
[Nie, Feiping]的文章
[Wang, Fei]的文章
必应学术
必应学术中相似的文章
[Yu, Weizhong]的文章
[Nie, Feiping]的文章
[Wang, Fei]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Fast and Flexible Large Graph Embedding Based on Anchors.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。