OPT OpenIR  > 光电测量技术实验室
Infrared target detection based on local contrast method and LK optical flow
Pan, Jiajia1,2; Tian, Yan1; Zhang, Xing1,2; Hao, Wei1
2018-11-09
会议名称3rd Optoelectronics Global Conference, OGC 2018
会议录名称2018 the 3rd Optoelectronics Global Conference, OGC 2018
页码176-179
会议日期2018-09-04
会议地点Shenzhen, China
出版者Institute of Electrical and Electronics Engineers Inc.
产权排序1
摘要

A robust and effective small dim object detection algorithm is the key to the success of an infrared tracking system. To help solve practical tracking problems, a detecting algorithm based on local contrast method (LCM) and Lucas-Kanade method (LK) is put forward. Firstly, the local contrast map of the input image is obtained using the local contrast measure which measures the dissimilarity between the current location and its neighborhoods. In this way, target signal enhancement and background clutter suppression are achieved simultaneously. Secondly, an adaptive threshold is applied to extract the suspected object regions. Finally, the central points of obtained regions are used as characteristic points, then LK optical flow algorithm to calculate optical flow at these points, and through the instantaneous velocity calculation and selection targets are detected. The experimental result shows that this method works perfectly and can effectively detect infrared targets under complex backgrounds. ? 2018 IEEE.

作者部门光电测量技术实验室
DOI10.1109/OGC.2018.8529967
收录类别EI
ISBN号9781538673973
语种英语
EI入藏号20185006248796
引用统计
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/30865
专题光电测量技术实验室
作者单位1.Xi'An Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi'an, China;
2.University of Chinese Academy of Science, Beijing, China
推荐引用方式
GB/T 7714
Pan, Jiajia,Tian, Yan,Zhang, Xing,et al. Infrared target detection based on local contrast method and LK optical flow[C]:Institute of Electrical and Electronics Engineers Inc.,2018:176-179.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Infrared target dete(3474KB)会议论文 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pan, Jiajia]的文章
[Tian, Yan]的文章
[Zhang, Xing]的文章
百度学术
百度学术中相似的文章
[Pan, Jiajia]的文章
[Tian, Yan]的文章
[Zhang, Xing]的文章
必应学术
必应学术中相似的文章
[Pan, Jiajia]的文章
[Tian, Yan]的文章
[Zhang, Xing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。