OPT OpenIR  > 光学影像学习与分析中心
Hierarchical Recurrent Neural Hashing for Image Retrieval with Hierarchical Convolutional Features
Lu, Xiaoqiang; Chen, Yaxiong; Li, Xuelong
作者部门光学影像学习与分析中心
2018-01
发表期刊IEEE Transactions on Image Processing
ISSN10577149;
卷号27期号:1页码:106-120
产权排序1
摘要Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods. © 1992-2012 IEEE.
DOI10.1109/TIP.2017.2755766
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20174104260201
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/30845
专题光学影像学习与分析中心
作者单位Xi'An Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, China
推荐引用方式
GB/T 7714
Lu, Xiaoqiang,Chen, Yaxiong,Li, Xuelong. Hierarchical Recurrent Neural Hashing for Image Retrieval with Hierarchical Convolutional Features[J]. IEEE Transactions on Image Processing,2018,27(1):106-120.
APA Lu, Xiaoqiang,Chen, Yaxiong,&Li, Xuelong.(2018).Hierarchical Recurrent Neural Hashing for Image Retrieval with Hierarchical Convolutional Features.IEEE Transactions on Image Processing,27(1),106-120.
MLA Lu, Xiaoqiang,et al."Hierarchical Recurrent Neural Hashing for Image Retrieval with Hierarchical Convolutional Features".IEEE Transactions on Image Processing 27.1(2018):106-120.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Hierarchical Recurre(2775KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lu, Xiaoqiang]的文章
[Chen, Yaxiong]的文章
[Li, Xuelong]的文章
百度学术
百度学术中相似的文章
[Lu, Xiaoqiang]的文章
[Chen, Yaxiong]的文章
[Li, Xuelong]的文章
必应学术
必应学术中相似的文章
[Lu, Xiaoqiang]的文章
[Chen, Yaxiong]的文章
[Li, Xuelong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Hierarchical Recurrent Neural Hashing for Image Retrieval with Hierarchical Convolutional Features.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。