OPT OpenIR  > 光学影像学习与分析中心
Learning to Predict Eye Fixations via Multiresolution Convolutional Neural Networks
Liu, Nian1; Han, Junwei1; Liu, Tianming2; Li, Xuelong3
作者部门光学影像学习与分析中心
2018-02-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
卷号29期号:2页码:392-404
产权排序3
摘要Eye movements in the case of freely viewing natural scenes are believed to be guided by local contrast, global contrast, and top-down visual factors. Although a lot of previous works have explored these three saliency cues for several years, there still exists much room for improvement on how to model them and integrate them effectively. This paper proposes a novel computation model to predict eye fixations, which adopts a multiresolution convolutional neural network (Mr-CNN) to infer these three types of saliency cues from raw image data simultaneously. The proposed Mr-CNN is trained directly from fixation and nonfixation pixels with multiresolution input image regions with different contexts. It utilizes image pixels as inputs and eye fixation points as labels. Then, both the local and global contrasts are learned by fusing information in multiple contexts. Meanwhile, various top-down factors are learned in higher layers. Finally, optimal combination of top-down factors and bottom-up contrasts can be learned to predict eye fixations. The proposed approach significantly outperforms the state-of-the-art methods on several publically available benchmark databases, demonstrating the superiority of Mr-CNN. We also apply our method to the RGB-D image saliency detection problem. Through learning saliency cues induced by depth and RGB information on pixel level jointly and their interactions, our model achieves better performance on predicting eye fixations in RGB-D images.

关键词Contrast Convolutional Neural Network (Cnn) Eye Fixation Prediction Rgb-d Saliency Detection
DOI10.1109/TNNLS.2016.2628878
收录类别SCI ; EI ; CPCI
语种英语
WOS记录号WOS:000422952400013
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/30792
专题光学影像学习与分析中心
作者单位1.Northwestern Polytech Univ, Sch Automat, Xian 710072, Shaanxi, Peoples R China;
2.Univ Georgia, Dept Comp Sci, Athens, GA 30602 USA;
3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Ctr Opt IMagery Anal & Learning, State Key Lab Transient Opt & Photon, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Liu, Nian,Han, Junwei,Liu, Tianming,et al. Learning to Predict Eye Fixations via Multiresolution Convolutional Neural Networks[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2018,29(2):392-404.
APA Liu, Nian,Han, Junwei,Liu, Tianming,&Li, Xuelong.(2018).Learning to Predict Eye Fixations via Multiresolution Convolutional Neural Networks.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,29(2),392-404.
MLA Liu, Nian,et al."Learning to Predict Eye Fixations via Multiresolution Convolutional Neural Networks".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 29.2(2018):392-404.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Learning to Predict (2296KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Nian]的文章
[Han, Junwei]的文章
[Liu, Tianming]的文章
百度学术
百度学术中相似的文章
[Liu, Nian]的文章
[Han, Junwei]的文章
[Liu, Tianming]的文章
必应学术
必应学术中相似的文章
[Liu, Nian]的文章
[Han, Junwei]的文章
[Liu, Tianming]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Learning to Predict Eye Fixations via Multiresolution Convolutional Neural Networks.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。