OPT OpenIR  > 光谱成像技术实验室
Random selection-based adaptive saliency-weighted RXD anomaly detection for hyperspectral imagery
Liu, Weihua1; Feng, Xiangpeng1; Wang, Shuang1; Hu, Bingliang1; Gan, Yuquan1; Zhang, Xiaorong1; Lei, Tao2
作者部门光谱成像技术实验室
2018
发表期刊INTERNATIONAL JOURNAL OF REMOTE SENSING
ISSN0143-1161
卷号39期号:8页码:2139-2158
产权排序1
摘要

With recent advances in hyperspectral imaging sensors, subtle and concealed targets that cannot be detected by multispectral imagery can be identified. The most widely used anomaly detection method is based on the Reed-Xiaoli (RX) algorithm. This unsupervised technique is preferable to supervised methods because it requires no a priori information for target detection. However, two major problems limit the performance of the RX detector (RXD). First, the background covariance matrix cannot be properly modelled because the complex background contains anomalous pixels and the images contain noise. Second, most RX-like methods use spectral information provided by data samples but ignore the spatial information of local pixels. Based on this observation, this article extends the concept of the weighted RX to develop a new approach called an adaptive saliency-weighted RXD (ASW-RXD) approach that integrates spectral and spatial image information into an RXD to improve anomaly detection performance at the pixel level. We recast the background covariance matrix and the mean vector of the RX function by multiplying them by a joint weight that in fuses spectral and local spatial information into each pixel. To better estimate the purity of the background, pixels are randomly selected from the image to represent background statistics. Experiments on two hyperspectral images showed that the proposed random selection-based ASW RXD (RSASW-RXD) approach can detect anomalies of various sizes, ranging from a few pixels to the sub-pixel level. It also yielded good performance compared with other benchmark methods.

 

DOI10.1080/01431161.2017.1420931
收录类别SCI ; EI
语种英语
WOS记录号WOS:000424236900005
EI入藏号20180604764681
引用统计
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/30777
专题光谱成像技术实验室
作者单位1.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian, Shaanxi, Peoples R China;
2.Shaanxi Univ Sci & Technol, Coll Elect & Informat Engn, Xian, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Liu, Weihua,Feng, Xiangpeng,Wang, Shuang,et al. Random selection-based adaptive saliency-weighted RXD anomaly detection for hyperspectral imagery[J]. INTERNATIONAL JOURNAL OF REMOTE SENSING,2018,39(8):2139-2158.
APA Liu, Weihua.,Feng, Xiangpeng.,Wang, Shuang.,Hu, Bingliang.,Gan, Yuquan.,...&Lei, Tao.(2018).Random selection-based adaptive saliency-weighted RXD anomaly detection for hyperspectral imagery.INTERNATIONAL JOURNAL OF REMOTE SENSING,39(8),2139-2158.
MLA Liu, Weihua,et al."Random selection-based adaptive saliency-weighted RXD anomaly detection for hyperspectral imagery".INTERNATIONAL JOURNAL OF REMOTE SENSING 39.8(2018):2139-2158.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Random selection-bas(3205KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Weihua]的文章
[Feng, Xiangpeng]的文章
[Wang, Shuang]的文章
百度学术
百度学术中相似的文章
[Liu, Weihua]的文章
[Feng, Xiangpeng]的文章
[Wang, Shuang]的文章
必应学术
必应学术中相似的文章
[Liu, Weihua]的文章
[Feng, Xiangpeng]的文章
[Wang, Shuang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Random selection-based adaptive saliency-weighted RXD anomaly detection for hyperspectral imagery.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。