OPT OpenIR  > 光学影像学习与分析中心
Identifying Objective and Subjective Words via Topic Modeling
Wang, Hanqi1; Wu, Fei1; Lu, Weiming1; Yang, Yi2; Li, Xi1; Li, Xuelong3; Zhuang, Yueting1
作者部门光学影像学习与分析中心
2018-03-01
发表期刊IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN2162-237X
卷号29期号:3页码:718-730
产权排序3
摘要

It is observed that distinct words in a given document have either strong or weak ability in delivering facts (i.e., the objective sense) or expressing opinions (i.e., the subjective sense) depending on the topics they associate with. Motivated by the intuitive assumption that different words have varying degree of discriminative power in delivering the objective sense or the subjective sense with respect to their assigned topics, a model named as identified objective-subjective latent Dirichlet allocation (LDA) (iosLDA) is proposed in this paper. In the iosLDA model, the simple Polya urn model adopted in traditional topic models is modified by incorporating it with a probabilistic generative process, in which the novel "Bag-of-DiscriminativeWords" (BoDW) representation for the documents is obtained; each document has two different BoDW representations with regard to objective and subjective senses, respectively, which are employed in the joint objective and subjective classification instead of the traditional Bag-of-Topics representation. The experiments reported on documents and images demonstrate that: 1) the BoDW representation is more predictive than the traditional ones; 2) iosLDA boosts the performance of topic modeling via the joint discovery of latent topics and the different objective and subjective power hidden in every word; and 3) iosLDA has lower computational complexity than supervised LDA, especially under an increasing number of topics.

关键词Latent Dirichlet Allocation (Lda) Latent Variable Model Supervised Learning Topic Modeling
学科领域Computer Science, Artificial Intelligence
DOI10.1109/TNNLS.2016.2626379
收录类别SCI
语种英语
WOS记录号WOS:000426344600018
引用统计
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/30754
专题光学影像学习与分析中心
通讯作者Wu, Fei
作者单位1.Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310027, Peoples R China;
2.Univ Technol Sydney, Ctr Quantum Computat & Intelligent Syst, Ultimo, NSW 2007, Australia;
3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr Opt IMagery Anal & Learning OPTIMAL, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Wang, Hanqi,Wu, Fei,Lu, Weiming,et al. Identifying Objective and Subjective Words via Topic Modeling[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,2018,29(3):718-730.
APA Wang, Hanqi.,Wu, Fei.,Lu, Weiming.,Yang, Yi.,Li, Xi.,...&Zhuang, Yueting.(2018).Identifying Objective and Subjective Words via Topic Modeling.IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS,29(3),718-730.
MLA Wang, Hanqi,et al."Identifying Objective and Subjective Words via Topic Modeling".IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 29.3(2018):718-730.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Identifying Objectiv(4246KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Hanqi]的文章
[Wu, Fei]的文章
[Lu, Weiming]的文章
百度学术
百度学术中相似的文章
[Wang, Hanqi]的文章
[Wu, Fei]的文章
[Lu, Weiming]的文章
必应学术
必应学术中相似的文章
[Wang, Hanqi]的文章
[Wu, Fei]的文章
[Lu, Weiming]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Identifying Objective and Subjective Words via Topic Modeling.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。