OPT OpenIR  > 光学影像学习与分析中心
CNNs-Based RGB-D Saliency Detection via Cross-View Transfer and Multiview Fusion
Han, Junwei1; Chen, Hao1; Liu, Nian1; Yan, Chenggang2; Li, Xuelong3
作者部门光学影像学习与分析中心
2018-11
发表期刊IEEE TRANSACTIONS ON CYBERNETICS
ISSN2168-2267;2168-2275
卷号48期号:11页码:3171-3183
产权排序3
摘要

Salient object detection from RGB-D images aims to utilize both the depth view and RGB view to automatically localize objects of human interest in the scene. Although a few earlier efforts have been devoted to the study of this paper in recent years, two major challenges still remain: 1) how to leverage the depth view effectively to model the depth-induced saliency and 2) how to implement an optimal combination of the RGB view and depth view, which can make full use of complementary information among them. To address these two challenges, this paper proposes a novel framework based on convolutional neural networks (CNNs), which transfers the structure of the RGB-based deep neural network to be applicable for depth view and fuses the deep representations of both views automatically to obtain the final saliency map. In the proposed framework, the first challenge is modeled as a cross-view transfer problem and addressed by using the task-relevant initialization and adding deep supervision in hidden layer. The second challenge is addressed by a multiview CNN fusion model through a combination layer connecting the representation layers of RGB view and depth view. Comprehensive experiments on four benchmark datasets demonstrate the significant and consistent improvements of the proposed approach over other state-of-the-art methods.

关键词Convolutional Neural Networks (Cnns) Crossview Transfer Multiview Fusion Rgb-d Salient Object Detection
DOI10.1109/TCYB.2017.2761775
收录类别SCI ; EI
语种英语
WOS记录号WOS:000447825400013
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20174704417332
引用统计
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/30683
专题光学影像学习与分析中心
通讯作者Han, Junwei
作者单位1.Northwestern Polytech Univ, Sch Automat, Xian 710129, Shaanxi, Peoples R China
2.Hangzhou Dianzi Univ, Inst Informat & Control, Hangzhou 310018, Zhejiang, Peoples R China
3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr Opt Imagery Anal & Learning, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Han, Junwei,Chen, Hao,Liu, Nian,et al. CNNs-Based RGB-D Saliency Detection via Cross-View Transfer and Multiview Fusion[J]. IEEE TRANSACTIONS ON CYBERNETICS,2018,48(11):3171-3183.
APA Han, Junwei,Chen, Hao,Liu, Nian,Yan, Chenggang,&Li, Xuelong.(2018).CNNs-Based RGB-D Saliency Detection via Cross-View Transfer and Multiview Fusion.IEEE TRANSACTIONS ON CYBERNETICS,48(11),3171-3183.
MLA Han, Junwei,et al."CNNs-Based RGB-D Saliency Detection via Cross-View Transfer and Multiview Fusion".IEEE TRANSACTIONS ON CYBERNETICS 48.11(2018):3171-3183.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
CNNs-Based RGB-D Sal(2454KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Han, Junwei]的文章
[Chen, Hao]的文章
[Liu, Nian]的文章
百度学术
百度学术中相似的文章
[Han, Junwei]的文章
[Chen, Hao]的文章
[Liu, Nian]的文章
必应学术
必应学术中相似的文章
[Han, Junwei]的文章
[Chen, Hao]的文章
[Liu, Nian]的文章
相关权益政策
暂无数据
收藏/分享
文件名: CNNs-Based RGB-D Saliency Detection via Cross-View Transfer and Multiview Fusion.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。