OPT OpenIR  > 光谱成像技术实验室
Adaptive hyperspectral image classification using region-growing techniques
其他题名利用区域增长技术的自适应高光谱图像分类
Wu Yinhua; Hu Bingliang; Gao Xiaohui; Zhou Anan; WU Yin-hua (yinhuawoo@163.com)
作者部门光谱成像技术实验室
2018
发表期刊Optics and Precision Engineering
ISSN1004-924X
卷号26期号:2页码:426-434
产权排序1
摘要

Aiming at the problem of segmentation parameters setting in object-oriented hyperspectral classification method,an adaptive hyperspectral classification algorithm based on region-growing techniques was proposed in this paper.Firstly,a constrained region-growing method was proposed,which used the spatial information of the training samples to provide effective constraints,thus reducing the error propagation rate of the region markers in the region-growing process,and improving classification performance.Secondly,an adaptive threshold calculation method was proposed.By analyzing the distribution law of the spectrum of the training samples,the reasonable threshold for region division was calculated adaptively to replace the empirical threshold,so that the robustness of the algorithm was improved.Finally,the K-nearest neighbor algorithm (KNN)was used to classify the centers of each region after division.Experimental results show that:For different images,the adaptive thresholds calculated by the method are consistent with the empirical values,and the classification effect of the proposed algorithm is better than other algorithms.For hyperspectral data Indian Pines from AVIRIS sensor,the overall classification accuracy and kappa are 92.94% and 0.919 5 respectively with 10%training samples,and for hyperspectral data Pavia University from ROSIS sensor,the overall classification accuracy and kappa are 95.78%and 0.944 0 respectively with 5%training samples. The proposed algorithm not only enhances the robustness of the algorithm,but also improves the classification performance effectively,and has strong practicability in hyperspectral applications.

关键词Hyperspectral Classification Object-oriented Region-growing Adaptive
收录类别EI ; CSCD
语种中文
WOS研究方向Remote Sensing (provided by Clarivate Analytics)
引用统计
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/30165
专题光谱成像技术实验室
通讯作者WU Yin-hua (yinhuawoo@163.com)
作者单位Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an, 710119, China
推荐引用方式
GB/T 7714
Wu Yinhua,Hu Bingliang,Gao Xiaohui,et al. Adaptive hyperspectral image classification using region-growing techniques[J]. Optics and Precision Engineering,2018,26(2):426-434.
APA Wu Yinhua,Hu Bingliang,Gao Xiaohui,Zhou Anan,&WU Yin-hua .(2018).Adaptive hyperspectral image classification using region-growing techniques.Optics and Precision Engineering,26(2),426-434.
MLA Wu Yinhua,et al."Adaptive hyperspectral image classification using region-growing techniques".Optics and Precision Engineering 26.2(2018):426-434.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Adaptive hyperspectr(4073KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu Yinhua]的文章
[Hu Bingliang]的文章
[Gao Xiaohui]的文章
百度学术
百度学术中相似的文章
[Wu Yinhua]的文章
[Hu Bingliang]的文章
[Gao Xiaohui]的文章
必应学术
必应学术中相似的文章
[Wu Yinhua]的文章
[Hu Bingliang]的文章
[Gao Xiaohui]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Adaptive hyperspectral image classification using region-growing techniques.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。