OPT OpenIR  > 空间光学应用研究室
Robust multiframe images super resolution
Zong, Caihui1,2; Zhao, Hui1; Xie, Xiaopeng1,2; Li, Chuang1
2017
会议名称Applied Optics and Photonics China: Optical Sensing and Imaging Technology and Applications, AOPC 2017
会议录名称AOPC 2017: Optical Sensing and Imaging Technology and Applications
卷号10462
会议日期2017-06-04
会议地点Beijing, China
出版者SPIE
产权排序1
摘要

Super-resolution image reconstruction is a process to reconstruct high-resolution images from shifted, low-resolution, degraded observations. In the last two decades, a variety of super-resolution methods have been proposed. These methods are usually very sensitive to their assumed model of data and noise, which limits their utility. This paper reviews some of these methods and addresses their shortcomings. We propose an alternate approach using 1norm minimization and robust regularization based on a bilateral prior to deal with different data and noise models. This computationally inexpensive method is robust to errors in motion and blur estimation and results in images with sharp edges. Experimental results confirm the effectiveness of our method and demonstrate its superiority to other super-resolution methods. © 2017 SPIE.

作者部门空间光学应用研究室
DOI10.1117/12.2285139
收录类别EI ; ISTP
ISBN号9781510614055
语种英语
ISSN号0277786X
引用统计
文献类型会议论文
条目标识符http://ir.opt.ac.cn/handle/181661/29898
专题空间光学应用研究室
作者单位1.Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science, No.17, Xinxi Road, Xi'an, 710119, China
2.Graduate School of University of Chinese Academy of Science, Jingjia Road, Beijing, 100049, China
推荐引用方式
GB/T 7714
Zong, Caihui,Zhao, Hui,Xie, Xiaopeng,et al. Robust multiframe images super resolution[C]:SPIE,2017.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Robust multiframe im(858KB)会议论文 开放获取CC BY-NC-SA请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zong, Caihui]的文章
[Zhao, Hui]的文章
[Xie, Xiaopeng]的文章
百度学术
百度学术中相似的文章
[Zong, Caihui]的文章
[Zhao, Hui]的文章
[Xie, Xiaopeng]的文章
必应学术
必应学术中相似的文章
[Zong, Caihui]的文章
[Zhao, Hui]的文章
[Xie, Xiaopeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。