OPT OpenIR  > 光学影像学习与分析中心
Visual-Textual Joint Relevance Learning for Tag-Based Social Image Search
Gao, Yue1; Wang, Meng2; Zha, Zheng-Jun3; Shen, Jialie4; Li, Xuelong5; Wu, Xindong6,7
2013
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
卷号22期号:1页码:363-376
摘要Due to the popularity of social media websites, extensive research efforts have been dedicated to tag-based social image search. Both visual information and tags have been investigated in the research field. However, most existing methods use tags and visual characteristics either separately or sequentially in order to estimate the relevance of images. In this paper, we propose an approach that simultaneously utilizes both visual and textual information to estimate the relevance of user tagged images. The relevance estimation is determined with a hypergraph learning approach. In this method, a social image hypergraph is constructed, where vertices represent images and hyperedges represent visual or textual terms. Learning is achieved with use of a set of pseudo-positive images, where the weights of hyperedges are updated throughout the learning process. In this way, the impact of different tags and visual words can be automatically modulated. Comparative results of the experiments conducted on a dataset including 370+ images are presented, which demonstrate the effectiveness of the proposed approach.
文章类型Article
关键词Hypergraph Learning Social Image Search Tag Visual-textual
WOS标题词Science & Technology ; Technology
收录类别SCI ; EI
关键词[WOS]HYPER-GRAPHS ; RETRIEVAL ; RECOGNITION ; FEATURES
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000312892000029
引用统计
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/23196
专题光学影像学习与分析中心
作者单位1.Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
2.Hefei Univ Technol, Comp Sci & Informat Engn Dept, Hefei 230009, Peoples R China
3.Natl Univ Singapore, Sch Comp, Singapore 117417, Singapore
4.Singapore Management Univ, Sch Informat Syst, Singapore 178902, Singapore
5.Chinese Acad Sci, Xian Inst Opt & Precis Mech, Beijing 100864, Peoples R China
6.Hefei Univ Technol, Sch Comp Sci & Informat Engn, Hefei 230009, Peoples R China
7.Univ Vermont, Dept Comp Sci, Burlington, VT 05405 USA
推荐引用方式
GB/T 7714
Gao, Yue,Wang, Meng,Zha, Zheng-Jun,et al. Visual-Textual Joint Relevance Learning for Tag-Based Social Image Search[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2013,22(1):363-376.
APA Gao, Yue,Wang, Meng,Zha, Zheng-Jun,Shen, Jialie,Li, Xuelong,&Wu, Xindong.(2013).Visual-Textual Joint Relevance Learning for Tag-Based Social Image Search.IEEE TRANSACTIONS ON IMAGE PROCESSING,22(1),363-376.
MLA Gao, Yue,et al."Visual-Textual Joint Relevance Learning for Tag-Based Social Image Search".IEEE TRANSACTIONS ON IMAGE PROCESSING 22.1(2013):363-376.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Visual-Textual Joint(2269KB)期刊论文出版稿开放获取CC BY浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Yue]的文章
[Wang, Meng]的文章
[Zha, Zheng-Jun]的文章
百度学术
百度学术中相似的文章
[Gao, Yue]的文章
[Wang, Meng]的文章
[Zha, Zheng-Jun]的文章
必应学术
必应学术中相似的文章
[Gao, Yue]的文章
[Wang, Meng]的文章
[Zha, Zheng-Jun]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Visual-Textual Joint Relevance Learning for Tag-Based Social Image Search.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。