OPT OpenIR  > 光学影像学习与分析中心
Constrained Nonnegative Matrix Factorization for Image Representation
Liu, Haifeng1; Wu, Zhaohui1; Li, Xuelong2; Cai, Deng3; Huang, Thomas S.4
作者部门光学影像分析与学习中心
2012-07-01
发表期刊IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
ISSN0162-8828
卷号34期号:7页码:1299-1311
产权排序3
摘要Nonnegative matrix factorization (NMF) is a popular technique for finding parts-based, linear representations of nonnegative data. It has been successfully applied in a wide range of applications such as pattern recognition, information retrieval, and computer vision. However, NMF is essentially an unsupervised method and cannot make use of label information. In this paper, we propose a novel semi-supervised matrix decomposition method, called Constrained Nonnegative Matrix Factorization (CNMF), which incorporates the label information as additional constraints. Specifically, we show how explicitly combining label information improves the discriminating power of the resulting matrix decomposition. We explore the proposed CNMF method with two cost function formulations and provide the corresponding update solutions for the optimization problems. Empirical experiments demonstrate the effectiveness of our novel algorithm in comparison to the state-of-the-art approaches through a set of evaluations based on real-world applications.
文章类型Article
关键词Nonnegative Matrix Factorization Semi-supervised Learning Dimension Reduction Clustering
学科领域Computer Science
WOS标题词Science & Technology ; Technology
DOI10.1109/TPAMI.2011.217
收录类别SCI ; EI
关键词[WOS]GRADIENT ; MANIFOLD ; PARTS
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000304138300004
引用统计
文献类型期刊论文
条目标识符http://ir.opt.ac.cn/handle/181661/20255
专题光学影像学习与分析中心
作者单位1.Zhejiang Univ, Coll Comp Sci, Hangzhou 310027, Zhejiang, Peoples R China
2.Chinese Acad Sci, Ctr Opt IMagery Anal & Learning OPTIMAL, State Key Lab Transient Opt & Photon, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China
3.Zhejiang Univ, State Key Lab CAD&CG, Coll Comp Sci, Hangzhou 310058, Zhejiang, Peoples R China
4.Univ Illinois, Dept Elect & Comp Engn, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
推荐引用方式
GB/T 7714
Liu, Haifeng,Wu, Zhaohui,Li, Xuelong,et al. Constrained Nonnegative Matrix Factorization for Image Representation[J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,2012,34(7):1299-1311.
APA Liu, Haifeng,Wu, Zhaohui,Li, Xuelong,Cai, Deng,&Huang, Thomas S..(2012).Constrained Nonnegative Matrix Factorization for Image Representation.IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,34(7),1299-1311.
MLA Liu, Haifeng,et al."Constrained Nonnegative Matrix Factorization for Image Representation".IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 34.7(2012):1299-1311.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Constrained Nonnegat(2042KB)期刊论文出版稿开放获取CC BY浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Haifeng]的文章
[Wu, Zhaohui]的文章
[Li, Xuelong]的文章
百度学术
百度学术中相似的文章
[Liu, Haifeng]的文章
[Wu, Zhaohui]的文章
[Li, Xuelong]的文章
必应学术
必应学术中相似的文章
[Liu, Haifeng]的文章
[Wu, Zhaohui]的文章
[Li, Xuelong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Constrained Nonnegative Matrix Factorization for Image Representation.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。